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Distinct genetic liability profiles define
clinically relevant patient strata across
common diseases
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Stratified medicine holds great promise to tailor treatment to the needs of
individual patients. While genetics holds great potential to aid patient strati-
fication, it remains a major challenge to operationalize complex genetic risk
factor profiles to deconstruct clinical heterogeneity. Contemporary approa-
ches to this problem rely on polygenic risk scores (PRS), which provide only
limited clinical utility and lack a clear biological foundation. To overcome
these limitations, we develop the CASTom-iGEx approach to stratify indivi-
duals based on the aggregated impact of their genetic risk factor profiles on
tissue specific gene expression levels. The paradigmatic application of this
approach to coronary artery disease or schizophrenia patient cohorts identi-
fied diverse strata or biotypes. These biotypes are characterized by distinct
endophenotype profiles as well as clinical parameters and are fundamentally
distinct fromPRS based groupings. In stark contrast to the latter, the CASTom-
iGEx strategy discovers biologically meaningful and clinically actionable
patient subgroups, where complex genetic liabilities are not randomly dis-
tributed across individuals but rather converge onto distinct disease relevant
biological processes. These results support the notion of different patient
biotypes characterized by partially distinct pathomechanisms. Thus, the uni-
versally applicable approach presented here has the potential to constitute an
important component of future personalized medicine paradigms.

Complex diseases affect millions of people each year and are respon-
sible for ~70% of global deaths1. They originate from the complex
interplay of genetic and environmental factors with varying contribu-
tions of the former. Understanding their molecular basis remains one
of themajor challenges of contemporarymedical research2,3. Genome-
wide association studies (GWAS) have exploited their frequently high

heritability and identifiedhundreds ofdisease susceptibility loci across
a wide spectrum of diseases4,5. However, it remains challenging to
translate these associations into insights on molecular pathomechan-
isms. These challenges are rooted in the highly polygenic nature of
these diseases, where individual associated genetic variants carry only
small effect sizes6 and are mostly located in the non-coding space of
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thegenomewith unknown function7,8.Most importantly, a high level of
heterogeneity in symptoms, disease course, and treatment response is
severely impeding effective care for large numbers of affected indivi-
duals. This widespread heterogeneity on the clinical level coincides
with a high level of genetic heterogeneity, where each patient harbors
almost a private combination of disease-relevant genetic factors9.

These observations raise the question whether or not clinical
heterogeneity at least partially originates from differences in the
underlying genetic susceptibility9, giving rise to distinct underlying
patient classes or biotypes, that are at present considered as homo-
geneous group on the clinical level10.

However, addressing this question is currently precluded by a
critical gap between our insights into the overall disease association
of individual genetic variants and the aggregated impact of these
variants on biological processes and clinically relevant parameters
in individual patients. This gap constitutes one of themajor obstacles
on the road towards the implementation of personalized medicine
and the operationalization of genetic information in clinical decision
making11.

A key step towards translating genetic associations intomolecular
biological consequences has been the development of transcriptome-
wide association studies (TWAS). This approach combines genotype-
based prediction of individual and tissue specific gene expression
levels based on common variants with disease association testing12,13,
enabling improved biological interpretability. In parallel, distinct types
of polygenic score (PGS) and polygenic risk score (PRS) concepts were
developed to resolve genetic heterogeneity and identify individuals at
higher risk for a particular diagnosis or trait expression14. This strati-
fication approach provides increased detection power to discover
associations between different types of PGS and intermediate pheno-
types or clinically relevant endpoints15–17 such as disease severity18.
Conversely, patient stratification on the clinical and endophenotype
level found ample evidence for distinct clinical subgroups, such as e.g.
in heart failure19, type 1 diabetes20 or MDD and suggested distinct PRS
levels of these phenotypically defined groups10.

However, alternative stratification approaches based on genetic
correlations did not detect the presence of specific subgroups inmost
analyzed traits such as SCZ, MDD or diabetes21,22.

In summary, current approaches to genotype-based patient stra-
tification rely on univariate genetic scores for a priori defined traits or
specific hypothesis driven genes23/pathways16,24, resulting in a dichot-
omous classification of patients. These strategies are supervised in
nature and require detailed a priori insights on potential disease
mechanisms, precluding an unbiased discovery of subgroups and
potential group-specific genetic liabilities. Moreover, traditional PGS
approaches are agnostic of the underlying biological mechanisms,
rendering the biological interpretation of resulting patient strata
challenging.

To overcome these limitations, we sought to operationalize per-
sonal genetic profiles to stratify patients into biologically meaningful
distinct subgroups in an unbiased and unsupervised manner and
answer the question: How does heterogeneity in genetic risk factor
distribution contribute to heterogeneity in clinical parameters and
severity across patient populations?

To address this question, we develop here the CASTom-iGEx fra-
mework (Supplementary Fig. 1) to stratify patients into distinct sub-
groups based on tissue specific imputed gene expression and pathway
activity profiles. When then applied this multivariate stratification
strategy to different complex diseases (coronary artery disease or
schizophrenia), identifying distinct patient subgroups that cannot be
discovered by traditional PRS based analysis. We show that these
groups are clinically meaningful and differ with respect to inter-
mediate phenotypes, and clinical outcome parameters. Most impor-
tantly, we leverage the concept of a pathway level association studies
to show that these groups differ with respect to the distribution of

genetic disease liability across specific biological processes that are
closely linked to their differences in intermediate phenotypes.

Results
We predicted tissue specific gene expression profiles from individual
level genotype data based on biologically meaningful sets of common
variants using a modified elastic-net based method (PriLer, Methods,
Supplementary Fig. 2). We trained this method on reference datasets
fromGTEx v6p25 and the CommonMind Consortium26, for a total of 34
tissues (Supplementary Table 1). While PriLer showed prediction per-
formance comparable to the most popular existing approaches
(FUSION, prediXcan, EpiXcan27, Supplementary Fig. 3a, b), it selected
SNPs with a higher likelihood of being biologically meaningful based
on overlap with various functional genomic annotations (Supple-
mentary Fig. 3c, Supplementary Text). We, therefore, employed PriLer
in subsequent analyses. However, due to the modular setup of CAS-
Tom-iGEx, all other analysis steps can also be performed with any
other gene expression imputation method (see Discussion).

We next set out to test the hypothesis whether imputed gene
expression profiles can be operationalized to resolve genetic and
clinical heterogeneity acrosspatients affected by complex diseases. To
that end, we initially focus the paradigmatic application of this
approach on coronary artery disease (CAD), a highly polygenic and
clinically well-characterized disease caused by the buildup of plaques
in the artery walls supplying blood to the heart.

Unsupervised patient subgroup identification
We first applied GTEx trained PriLer models to predicted tissue-
specific gene expression profiles for 11 tissues on 340,939 individuals
from the UK biobank (UKBB) as well as 9 independent CARDIoGRAM28

cohorts to assess reproducibility (n = 26,681). To enable CAD patient
subgroup discovery, we next implemented an unsupervised clustering
strategy of predicted patient-level gene expression profiles. To that
end, we first transformed the patient-level imputed gene expression
values to T-scores for each gene and tissue. The latter quantify the
deviation of gene expression in each patient relative to a reference
population of healthy individuals. This transformation ensures a
similar distribution of expression values across samples for each gene
(Supplementary Fig. 4a, b), with the gene variance being not depen-
dent on the PriLer model performances (Supplementary Fig. 4c) and
reducing the correlation among samples (Supplementary Fig. 4d,
Supplementary Text).

In order obtain patient subgroupdefinitions that are related to the
disease phenotype, we weighted the contribution of each gene in the
clustering according to its relevance for the overall CAD phenotype.
We therefore performed tissue specific transcriptome-wide associa-
tion analyzes (TWAS) based on the individual-level gene T-score pro-
files, giving rise to standardphenotype-association statisticsquantified
as Z-statistic (Supplementary Fig. 5a, Supplementary Data 1). Subse-
quently, the individual level gene T-scores were weighted by the CAD
gene Z-statistics to derive a weighted individual-level gene expression
value, incorporating disease association strength. These scores were
then used in an unsupervised clustering based on Leiden clustering for
community detection29, partitioning CAD patients into distinct sub-
groups, using empirically optimized hyperparameters (Methods,
Supplementary Fig. 5b–h).

Clustering was performed for each tissue separately, correcting
for ancestry contribution as well as other covariates, almost eliminat-
ing the impact of these confounders while maintaining a robust clus-
tering structure (Supplementary Fig. 5i, j, Methods). Importantly, the
strategy to weigh T-scores with the CAD phenotype association
Z-statistics proved crucial to achieve well-defined clusters (Supple-
mentary Fig. 6a, b) and allows genes/pathways that are more relevant
for CAD to have a higher impact in the final clustering configuration
(Supplementary Fig. 6c, d, see also Supplementary Text).
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Overall, unsupervised clustering analysis of n = 19,026 CAD
patients from the UKBB identified between 3 and 10 groups of CAD
patients (Supplementary Fig. 6e) that largely overlap for clustering
results from different tissues (Supplementary Fig. 6f). In light of these
similarities among clustering results and the relevance of liver in CAD
pathophysiology, we focused on patient stratification based on
expression profiles in the liver (Fig. 1a). Careful evaluation of this
patient group structure revealed that the latter was not driven by
single genes, but rather by a combination of CAD associated genes
from multiple independent loci (Supplementary Fig. 6g, Supplemen-
tary Data 2). Moreover, analysis of well-known confounding factors
showed that group structure was not driven by age, sex or ancestry
contributions (see the detailed analysis of the latter factors in Sup-
plementary Text and Supplementary Fig. 7a–d, Supplementary Fig. 8).

To evaluate the generalizability and reproducibility of this patient
stratification approach, we projected the imputed gene level score
profiles from 9 independent CARDIoGRAM cohorts (n = 13,279 CAD
patients) onto the clustering structure discoveredon theUKBBdataset
(see Methods). Subsequently, we determined the fraction of CARDIo-
GRAM CAD cases assigned to each cluster. This analysis revealed a
virtually identical distribution of CAD cases across the clusters com-
pared to the original UKBB dataset (Fig. 1b). Spearman correlation
analysis of the cluster-specific genes expression estimates (Methods)
for individual CARDIoGRAM cohorts and the UKBB dataset showed
excellent concordance (cor. > 0.8, Fig. 1c), withWTCCCbeing themost
consistent cohort (cor. > 0.9) and was not driven by a single locus
(Supplementary Fig. 7e).

Jointly, these results establish the CASTom-iGEx stratification
scheme as a reproducible and unbiased approach to derive genetically
defined patient groups in an unsupervised manner.

Comparison of CASTom-iGEx and PRS based stratification
To assess the added value of this stratification strategy, we compared
the CASTom-iGEx derived patient subgroups to the current state-of-
the-art stratification strategy based on PRS profiles. To this end, we
partitioned all CAD cases into 4 equally sized groups based on their
CAD PRS quartiles derived from a GWAS that we conducted on the
UKBBdataset (Fig. 1d, e, Methods). The resulting PRS grouping of CAD
patients was highly distinct from the CASTom-iGEx based clustering,
with minimal overlap (NMI = 0.0013, Fig. 1f) and PRS being equally
distributed across the CASTom-iGEx clusters (Fig. 1g).

Next, we evaluated whether the clustering structures were able to
resolve clinical heterogeneity across the CAD patient population and
tested 249 disease relevant endophenotypes and clinical parameters
for subgroup specific association with respect to all other patients.

The CASTom-iGEx based clustering resulted in 42 significant
cluster specific endophenotype associations (26 unique endopheno-
types), all with high disease relevance (FDR ≤ 0.1, Fig. 2a, Supplemen-
tary Fig. 9a, Supplementary Data 3). Similarly, the PRS based patient
stratification did also result in the identification of 64 CAD relevant
endophenotypic differences (39 unique) (Fig. 2b, Supplementary
Fig. 9b), with 10 (18.1%) associations being detected in both approa-
ches (Fig. 2c).

These results reproduced the known association of hypertension,
diabetes and increased triglycerides with a high PRS30. For the
CASTom-iGEx based clustering, differences in endophenotype profiles
were more diverse, with distinct configurations of high/low endo-
phenotype values (Fig. 2a) compared to the PRS clustering. For the
latter, consistently high or low endophenotype profiles were limited to
high or low PRS groups (Fig. 2b). Moreover, CASTom-iGEx derived
patient clusters explained consistently more variance across the vast
majority of CAD-related endophenotypes compared to the PRS based
grouping (Fig. 2d,e 62% of all and 81% of significantly group associated
endophenotypes). For several key CAD-related endophenotypes
such as APOB, LDL-cholesterol or total cholesterol the variance

explainedby theCASTom-iGEx based clustering increasedbetween2-5
fold (Fig. 2e).

Distinct biological basis of CASTom-iGEx but not PRS derived
patient strata
Next, we tested the hypothesis that PRS and CASTom-iGEx defined
patient groups were characterized by distinct genetic liabilities across
disease relevant biological processes.

To this end, we determined the differences in imputed gene
expression profiles between all groups within each clustering scheme,
after confirming the well-calibrated nature of the gene association
statistic (see Methods and Supplementary Text, Supplementary
Fig. 10). This analysis identified a total of 229 and 80unique geneswith
differential activity patterns across the CASTom-iGEx and PRS based
clustering respectively. For the former, each group exhibited between
21 and 214 differentially active genes in each group, while the PRS
groups showed ~50differentially active genes between the low and the
high PRS strata (Fig. 2f).

To enable the discovery of biological processes perturbed by the
group specific genetic liabilities, wedevised a strategy to aggregate the
individual weak genetic effects of common variants beyond the gene
to the pathway level. This methodology relies on the aggregation of
gene-level scores into continuous pathway activity scores at the indi-
vidual level, using a predefined set of pathways from GO biological
processes31, Reactome32 and WikiPathways33 (see Methods). Similar to
the imputed gene expression levels, these pathway activity scores can
be used for pathway level association studies (PALAS) for case/control
comparisons or the discovery of group-specific pathway associations
(see Methods, Supplementary Data 4).

Prior to proceeding with the group-specific evaluation, we first
confirmed the well-calibrated nature of this approach on permuted
data fromCAD (Supplementary Fig. 11a-d), external replication cohorts
(Supplementary Fig. 9e) and group specific pathway association test-
ing (Supplementary Fig. 11f-g). Importantly, the PALAS methodology
detected substantially more CAD associated pathways compared to
more traditional pathway enrichment strategies such as hypergeo-
metric testing of TWAS significant genes or MAGMA34 that each rely
on summary statistics (Supplementary Fig. 12a,b). This increase in
detection power partially resulted from aggregation over weak asso-
ciation effects (Supplementary Fig. 12c,d) and was not driven by
genetic correlation due to LD structure (Supplementary Fig. 12e-i,
Supplementary Text).

Application of this approach to discover differences in biological
process activity levels across CASTom-iGEx and PRS derived patient
strata identified a total of 284 and 5 unique associated pathways
respectively (Fig. 2g). While all CASTom-iGEx based patient groups
showed at least 36 pathway level associations, only PRS-based groups
low and high-risk showed 2 or 3 associations respectively (Fig. 2g).

Jointly, these results show that a PRS-based stratification detects
clinically relevant subgroups that exhibit differences in many disease-
relevant clinical parameters and endophenotypes between the low and
the high-risk group. However, the latter grouping lacks a common
biological basis. Instead, reduced/elevated genetic liability is mostly
randomly distributed across genes and pathways in the respective PRS
groups. Similarly, clustering of randomly selected individuals from the
UKBB showed minimal overlap in detected endophenotypic differ-
ences between clusters (Supplementary Fig. 13a-e, Supplementary
Text) or minimal overlap of the overall group structure if no infor-
mation on CAD relevance of genes used (Supplementary Fig. 13f-i).

In contrast, patient strata derived through the CASTom-iGEx
approach exhibit a non-random distribution of genetic liability across
genes in each patient. In particular, the CASTom-iGEx analysis shows
that aggregation of genetic liability across specific biological processes
is distinct in different patients. These genetically defined patient strata
exhibit a divergence in their disease relevant clinical and physiological
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on CASTom-iGEx groups depicting regression coefficient (βGLM) with 95% Con-
fidence Interval (CI). Full dot indicates that βGLM is significant (0.1 threshold) after
BH correction. Similar results for binary and ordinal categorical phenotypes are
shown in Supplementary Fig. 9a. N. of samples in each group is are gr1 = 6105,
gr2 = 4783, gr3 = 2831, gr4 = 4520, gr5 = 784. For each endophenotype tested, the
number of samples per group varied and was lower than the entire CAD case
population of 19,023due tomissing values, ranging from 16314 to 18919 total cases.
b Similar to a. for PRS quantile-based CAD patient grouping (FDR ≤0.1). N. of
samples in each group is are gr1 = 4756, gr2 = 4756, gr3 = 4755 and gr4 = 4756.
Forest plot measures are defined as in (a). c Overlap of unique significantly CAD
patient group associated endophenotypes for PRS quantile (blue) and CASTom-
iGEx (red) based grouping. d For group-specific endophenotypes in liver clustering

(FDR ≤0.1), comparison between the variance explained (R2) by liver partition (y-
axis) and PRS quartiles partition as computed from the difference of R2 in the full
linear model (pheno ~ group + cov) and the covariates only model (pheno ~ cov).
e For all CAD related endophenotypes (n = 249, x-axis) log2 ratio of variance
explained (R2) between the CASTom liver patient strata and PRS quartile patient
strata (y-axis left). Each bar represents one endophenotype, color coding indicates
significance of endophenotype-patient stratum association (n.s. – not significant,
nom – nominally significant p-value ≤0.001, FDR – FDR≤0.1). Lines show cumu-
lated variance explained (y-axis left) across all endophenotypes for CASTom liver-
based grouping (red) and PRS quartiles (blue). P-value indicates difference in
cumulated variance based on Wilcoxon-test. f Number of unique genes across
tissues cluster-relevant (FDR ≤0.01) divided per group, in CASTom-iGEx liver (left)
and PRS quartiles (right) partitions. The total number across all groups of cluster-
relevant genes is shown on top. g Same as f. but for cluster-relevant pathways
(FDR ≤0.01).
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parameters, suggesting potentially group specific pathomechanisms
constituting distinct patient biotypes.

CASTom-iGEx derived patient strata resolve genetic hetero-
geneity across CAD associated biological processes
In order to determine the shared and group specific pathway activity
profiles that discriminate patient groups from healthy controls, we
performed three pathway-related analysis. First, we determined all
genes and pathways associated with the entire population of CAD
patients compared to n = 321,831 controls and identified 567 sig-
nificant pathways (FDR≤0.05, PALAS 1, Fig. 3a, SupplementaryFig. 12a,
Supplementary Data 4). We then performed the same PALAS analysis
for each patient group separately relative to the entire unaffected
control population, sacrificing detection power but decreasing het-
erogeneity (PALAS 2, identifying 4058 unique pathways associated
with at least one group FDR ≤ 0.05). Finally, we tested for cluster-
specific pathways discriminating patient groups from each other,
testing each group versus all other CAD cases (WMW group analysis),
identifying 626 unique pathways (Wilcoxon-Mann-Whitney test, FDR ≤
0.01) (Fig. 3b, Supplementary Data 5). Replication of the group specific
results in a secondary analysis using genotype data from 9 indepen-
dent CARDIoGRAMcohorts (n = 13,279 cases) confirmed a high level of
replicability of patient group specific pathways scores (Fig. 3c, Sup-
plementary Fig. 14a). Moreover, validation of group-specific imputed
gene expression and pathway scores on non-imputed data using an
independent population-based cohort with genotyping as well as
transcriptomedata fromwhole blood (SHIP-TREND35,n = 976)was also
in good agreement with the predictions on the UKBB (Supplementary
Fig. 14b-g, Supplementary Text).

Subsequently, we compared the results of all three pathway-
related analyzes. As expected, pathways associated with each indivi-
dual groupwere highly enriched in the pathway set associatedwith the
union of all CAD patients compared to healthy controls (PALAS 1,
median unbiased estimator P < 1e-37, Fig. 3d). Next, we sought to dis-
criminate between those pathways associated with CAD across the
union of all clusters (PALAS 1) and those only associated with indivi-
dual CAD patient groups (PALAS 2, WMW group). To this end, we first
filtered (Methods) and decomposed the general set of CAD associated
pathways (PALAS 1,n = 467) according to the sign concordanceof their
association statistic. 264 (57%) of pathways showed the same sign
across all groups and PALAS 1, although not always reaching sig-
nificance in each subgroup PALAS (Supplementary Fig. 9c). These
pathways are indicative of shared pathomechanisms across patient
groups, and included e.g. apolipoprotein binding, death receptor sig-
naling and cyclin−dependent protein serine/threonine kinase inhibitor
activity (Supplementary Fig. 9c). The remaining 197 CAD pathways
(43%) exhibit a discordant sign of association in at least one group,
indicating cluster-specific mechanisms and include pathways such as
Golgi Associated Vesicle Biogenesis, antigen processing and pre-
sentation and actin filament (Supplementary Fig. 9d).

Considering all the available pathways, the majority of general
CAD hits (PALAS 1) showed evidence of association with most indivi-
dual patient groups (Fig. 3e). In contrast, only 6.3% of pathways iden-
tified in the group-specific analyzes and evaluated in all three pathway
analyzes (PALAS 2 andWMW group) were also detected in the general
CAD PALAS 1(Fig. 3f), with most group-specific associations showing
only weak general CAD signal (Fig. 3e). These genes and pathways
suggest the presence of patient group specific genetic liabilities in
additional biological processes.

These results underscore the presence of distinct genetic liabil-
ities towards different biological processes in different groups.
Moreover, they highlight the capacity of CASTom-iGEx to decon-
structs genetic heterogeneity across CAD associated biological
processes.

CASTom-iGEx patient stratum specific de-regulated pathways
directly modulate patient group associated endophenotypes
These previous analyzes establish (1) the existence of distinct CAD
patient subgroups, which are characterized by (2) partially distinct
genetic liabilities across biological processes as well as (3) group-
specific differences in disease-related endophenotypes.

However, it is unclear, whether these differences in endopheno-
types and clinical parameters are linked to the group-specific differ-
ences in genetic liability profiles across biological processes. To test
this hypothesis, we evaluatedwhether or not pathways with significant
group-specific activity profiles (Fig. 3c, d) contribute themodulationof
the respective group specific endophenotype profiles.

Therefore, we determined the bona fide genetic basis of CAD
relevant endophenotypes and linked them to specific biological pro-
cesses. We performed individual PALAS for all patient group asso-
ciated endophenotypes (n = 26) as well as a large set of control
endophenotypes (n = 317) across the entire UKBB population, irre-
spective of diagnosis status. This analysis identified between 0 and
5,123 significant (FDR ≤ 0.1) pathway-endophenotype associations
(Fig. 4a). Comparison of pathway-endophenotype (Supplementary
Data 6) and pathway-patient group association statistic (Z-statistic)
revealed a strong correlation for group associated endophenotypes
and an overall weak correlation for not group associated endophe-
notypes (Fig. 4b). Importantly, almost all significantly CAD group
associated endophenotypes showed high group specific correlation
between the respective endophenotype and patient stratum specific
pathway scores (Fig. 4c).

Jointly, these results show that differences in disease-relevant
endophenotypes across CAD patient groups are linked to genetically
driven differences in the biological processes underlying these
endophenotypes.

Identification of clinically relevant subgroups in CAD with dis-
tinct genetic liability in disease related biological processes
Subsequently, we jointly evaluated the group-specific cluster endo-
phenotype and pathway associations (Figs. 2a, 5a, b) to obtain insights
into anypotential group-specificpathomechanisms. In this context, we
only considered group specific pathways (PALAS 2, FDR ≤ 0.1) that
were also significantly associated with the respective endophenotype
(FDR ≤ 0.1).

CAD group 1 is characterized by significantly lower LDL-direct,
cholesterol and apolipoprotein B (APOB) levels compared to all other
groups (Fig. 5a) as well as elevated apolipoprotein A (APOA). This
endophenotypic profile is accompanied by a significant increase in
predicted pathway activity of LDL clearance and vesicle-mediated
transport pathways. Conversely, group 1 exhibits a significant decrease
in apolipoprotein binding, triglyceride homeostasis and macro-
autophagy related pathways, known to modulate e.g. apolipoprotein
levels36 (Fig. 5b).

In contrast, CAD group 2 shows a reduction in Golgi Associated
Vesicle Biogenesis, vesicle-mediated transport, ABC transporter rela-
ted genes and endocytosis (Fig. 5b). This pathway activity reduction is
accompanied by a significant increase of circulating LDL-cholesterol,
total cholesterol andAPBOB levels on the patient endophenotype level
(Figs. 2a, 5a). The latter is consistent with the notion that vesicles filled
with LDL-cholesterol particles are taken up by the cells via receptor-
mediated endocytosis mechanisms37. Accordingly, circulating LDL
levels exhibit a strong genetic association with endocytosis-related
pathways. Similarly, group 2 shows a significant increase in fatty acid
and general lipid metabolic processes that is also significantly asso-
ciated with circulating LDL levels, consistent with overall higher LDL-
and total cholesterol levels in patients of group 2 (Figs. 2a, 5a). Lastly,
patients in group 2 exhibit an increase in immune cell populations,
concomitant with a predicted increase in genes related to T cell
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Fig. 3 | Differences ingenetic liabilities across distinct biological process across
CADpatient groups. a CAD associated pathways with higher significance than any
of the included genes. Bars indicate PALAS Z-statistic (x-axis) with text signifying
gene pathway coverage. The pathway name in bold reflects pathways without any
significant gene (FDR >0.05). b Pathways significantly (FDR ≤0.01) differentially
active across CAD patient groups based on Wilcoxon-Mann-Whithney (WMW)
analysis (test two-sided). Rows indicate the names of selected pathways and
respective tissue is shown in parentheses. The left-side annotations show the cor-
responding CAD Z-statistics from PALAS 1. c Spearman correlation of WMW esti-
mates of pathway scores between all significant group-specific pathways in UKBB
(y-axis) and the corresponding pathways in each external cohort (CARDIoGRAM)
(x-axis) for each group (color coding) across all tissues. d Odds ratio (median-
unbiased estimation) with 95% CI of PALAS cluster pathways among PALAS CAD
pathways (FDR ≤0.05). PALAS cluster pathways are detected from PALAS com-
paring non-affected individuals with CAD cases in each group from Liver. In each

group, the number of pathways both in negative classes (PALAS cluster FDR>0.05
and PALAS CAD FDR >0.05) and both in positive classes (PALAS cluster FDR ≤0.05
and PALAS CAD FDR ≤0.05) are respectively gr1: negative 36140, positive 116; gr2:
negative 33272, positive 231; gr3: negative 35962, positive 81; gr4: negative 33405,
positive 166; gr5: negative 36165, positive: 49. e Comparison z-statistic for general
CAD PALAS (PALAS 1, x-axis) and patient group specific PALAS (PALAS 2, y-axis) for
each CASTom-iGEx defined group. Red dots indicate significant (FDR ≤0.05)
associations in both PALAS, green significance only in PALAS 1 and turquoise sig-
nificance only in PALAS 2. f Overlap of pathways significantly (FDR ≤0.05) asso-
ciated with CAD (blue, PALAS 1), significantly associated with at least one CASTom-
iGEx based patient group compared to all controls (green, PALAS 2), and those
showing group specific activities when compared to all other CAD cases only (red,
WMW group) out of 7978 tested pathways retained after pathway similarity prun-
ing (JS < 0.2, see Methods).
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proliferation as well as a decrease in IGF1 levels and cytokine signal-
ing (Fig. 5b).

To evaluate the potential clinical relevance of these observations,
we next assessed whether these differences in liabilities across genes,
biological processes and endophenotypes were associated with dif-
ferences in clinical parameters such as disease severity and/or trajec-
tory (Supplementary Data 7). To this end we leveraged additional
clinical phenotypes collected on 2383 CAD patients (GerMIFSV in
CARDIoGRAM), evaluated between patient groups following their
projection onto the UKBB clustering as well as 33 clinical parameters
collected in UKBB.

This analysis revealed that patients of group 1 show a significantly
lower age of stroke (Fig. 5c) as well as a lower incidence rate of

hyperlipidemia and peripheral vascular disease (Fig. 5d, e). In contrast,
patients in group 2 in GerMIFSV have a significantly higher number of
vessels affected by CAD, indicative of a more severe disease course
(Fig. 5f) and consistent with significantly lower IGF-1 levels38 compared
to all other groups (Fig. 5a). Moreover, group 2 patients show a mid-
range age of stroke as well as a higher incidence of hyperlipidemia
(Fig. 5f) and angina pectoris (Fig. 2b). These observations are con-
sistent with the overall higher levels of key CAD related endopheno-
types (LDL, APOB, immune cell population) and elevated genetic
liability towards theperturbation of associate endophenotype relevant
pathways including lipid metabolism, and endocytosis related path-
ways. Thus, group 2 constitutes the clinically most severely affected
patient group.
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Fig. 4 | Patient group-specific genetic liabilities are linked to the genetic basis
of group-specific disease relevant endophenotypes. a Frequency of pathway
number (x-axis) significantly (FDR ≤0.1) associated with UKBB endophenotypes
(n = 341). b Distribution of absolute Pearson correlation (y-axis) of significant
(FDR ≤0.1) pathway-endophenotype andpathway-patient group association PALAS
z-statistic for control endophenotypes (n = 317) and CAD patient group associated
endophenotypes (n = 24). The quartiles illustrated in box plots represent the 25th,
50th (median), and 75th percentiles. The interquartile range (IQR) denotes the
difference between the 75th and 25th percentiles. Upper whiskers extend to the
maximumdata valuewithin 1.5 times the IQR above the 75thpercentile, while lower

whiskers reach the minimum data value within 1.5 times the IQR below the 25th
percentile. Violin plots encompass both the maximum and minimum values.
c Forest plot showing Pearson correlation (x-axis) between pathway z-statistic for
CAD patient group specific PALAS and z-statistic for pathways associated with
UKBB endophenotypes (y-axis) for each CASTom-iGEx defined group. Only endo-
phenotypes significantly associated with at least one group (FDR ≤0.1) are con-
sidered. Blue bar indicates that the association is significant in both measured
group-specific endophenotype and correlation from group PALAS and endophe-
notype PALAS z-statistics (both FDR ≤0.1).
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Similarly, patients in group 3 exhibit significantly increased LDL-
cholesterol, total cholesterol and APOB levels but no significant
change in APOA. In contrast, group 3 patients show significantly
decreased white blood cell counts. On the pathway level, these endo-
phenotype profiles were linked to significantly altered genetic liability
towards lower endocytosis and lower Golgi vesicle biogenesis. Similar
to group 2, group 3 patients also show an increased frequency of
hyperlipidemia and age of stroke.

In contrast, group 5 shows the lowest levels CAD related endo-
phenotype values, (Figs. 2a, 5a) as well as the lowest frequency of
clinically relevant outcome parameters and other diseases, including
significantly reduced frequency of hyperlipidemia (Fig. 5d–f). Group 5
also shows the highest levels of APOA and direct bilirubin levels
(Figs. 2a, 5a), recently implied as a biomarker for long term outcome
and disease severity in CAD39. These observations suggest that group 5
represents the healthiest group of CAD patients.

Simultaneously, group 5 exhibits the lowest genetic liabilities
across CAD associated biological processes as well as significantly
increased predicted endocytosis and Golgi associated vesicle biogen-
esis (Fig. 5b). Although not significant, we also observed a trend of
increased CRP levels in group 5 (Fig. 2a) connected to endocytosis and
glutathione biosynthesis liabilities. Interestingly, glucosamine con-
sumption reduced CRP levels in group 5 individuals, compared to all
the other groups, where no decrease or even an opposite trend was
observed (Supplementary Fig. 15). This analysis suggests a possible
cost-effective therapeutic strategy to decrease inflammatory activity
for patients with precise genetic liabilities.

Finally, patients assigned to group 4 exhibit decreased levels of
LDL-cholesterol, total cholesterol and APOA concomitant with
decreased liabilities of biologicalprocesses of pathways linked to these
endophenotypes. In contrast, patients in group 4 show increased
genetic liability towards many immune-related pathways such includ-
ing interferon signaling as well as response to insulin (Fig. 5b), all of
which were negatively associated with markers of inflammatory pro-
cesses such as C-reactive protein (CRP) (Supplementary Data 5).
Consistent with this finding, group 4 patients show decreased CRP
levels compared to all other groups (Fig. 2a) and an increased fre-
quency of peripheral vascular diseases and a slightly higher age of
stroke (Fig. 5c,e). These observations suggest an increased relevance
of inflammation related processes in CAD specifically in this subgroup
of patients that is linked to distinct clinical characteristics.

In summary, these analyzes show the existence of CAD patient
strata inwith distinct genetic liabilities across biological processes that
are directly linked to differences in disease-relevant endophenotypes
and clinical parameters.

Deconstructing heterogeneity among SCZ patients
Going beyond well characterized CAD, we decided to evaluate the
capacity of CASTom-iGEx to obtain insights into the biological basis of
clinical heterogeneity in SCZ as a more enigmatic illness. While the
existence of clinical subtypes of SCZ patients is well known40, it is at
present unclear, whether or not this phenotypic heterogeneity might
result from a distinct genetic basis and potentially distinct biological
mechanisms. To address thesequestions, we applied theCASTom-iGEx

1 2 3 4 5
Group

7.3e−03 − 3.1e−02 3.8e−02 −

20

40

60

1 2 3 4 5

Age_stroke
8.2e−03 3.1e−02 3.8e−02 − 1.7e−04

0.0

0.2

0.4

0.6

1 2 3 4 5

Pe
rc

en
ta

ge

Hyperlipidemia
2.9e−02 − − 2.8e−03 −

0.000

0.005

0.010

0.015

0.020

0.025

1 2 3 4 5
Pe

rc
en

ta
ge

Peripheral_vascular_disease

0 1 2 3

− 2.3e−02 − − −

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

Pe
rc

en
ta

ge

Vessel_affected

a b

dc e f

Group

Group Group Group Group

LDL direct

Cholesterol

Hyperlipidemia

I20 Angina pectoris

Peripheral_vascular_disease
IGF−1

Apolipoprotein A

C−reactive protein

Direct bilirubin

Lymphocyte count

Apolipoprotein B

0%

50%

100%

triglyceride homeostasis (WB)

Glutathione conjugation (WB)

Golgi Associated 
Vesicle Biogenesis (L)

Vesicle−mediated transport (L)

triglyceride metabolic
process (AG)

Metabolism of lipids (CS)
macroautophagy (WB)

type I interferon signaling pathway (HAA)

Cytokine Signaling in Immune system (HAA)

endocytic vesicle membrane (L)

negative regulation of T cell proliferation (HLV)

LDL clearance (L)

apolipoprotein binding (L)

0%

50%

100%

1 2 3 4 5 control

Fig. 5 | Distinct CAD patient groups exhibit differences in clinical outcome
parameters. a Mean value of selected group-specific endophenotypes in each
group rescaled to 0-100 range. b Mean pathway score value of selected group-
specific pathways compared to healthy controls. The values are rescaled to 0-100
range and include the average scores for controls as reference. cDistribution of age
of stroke for patients in UKBB. In c-e nominal p-values from group-wise GLM is
shown at the top of the bar/violin plot. Boxplot elements includemedian as central
line, 1st and 3rd quartiles as box limits, 1.5 interquartile ranges from 1st and 3rd

quartiles as corresponding whiskers. N. of samples in each violin/boxplots are
respectively:gr1 = 294, gr2 = 242, gr3 = 142, gr4 = 235, gr5 = 35. d Percentage of
patients in UKBB clustering with comorbidity hyperlipidemia. e Percentage of
patients inUKBB clusteringwith peripheral vascular disease. In (h-k). fCADseverity
indicators across projected clusters in GerMIFSV cohort. Y-axis indicates the per-
centage of patients with a certain number of vessels affected (gray shades). X-axis
indicates the projected group.

Article https://doi.org/10.1038/s41467-024-49338-2

Nature Communications |         (2024) 15:5534 9



pipeline to 36 Europeancohorts fromPsychiatricGenomicConsortium
(PGC) wave 241 for a total of 24,764 cases and 30,655 controls, lever-
aging 9 GTEx tissues and DLPC (dorsolateral prefrontal cortex) gene
expression data from the CommonMind consortium as PriLer gene
expression model training data26 (Supplementary Data 8 & 9).

Following a similar strategy as applied for CAD (Methods), we
identified 4 groups of SCZ patients based on clustering of 5,682 gene
T-scores from DLPC (Supplementary Fig. 16, Fig. 6a) on 35 PGC
cohorts. Detailed analysis of potential confounders revealed minimal
impact of ancestry and cohort membership on clustering structure as
well as on detected gene associations (Supplementary Fig. 17a–d,
Supplementary Fig. 18, Supplementary Text).

In total,we identified755 cluster-specific genes (FDR≤0.01) out of
26,836 tested across the 10 tissues distributed across 124 independent
loci (Supplementary Fig. 17a, Supplementary Data 10). The reprodu-
cibility of the observed clustering structure and identified group spe-
cific genes in the left-out PGC cohort was high based on the
distribution of patients across groups and spearman correlation
( > 0.95 for 3 groups and >0.65 for group 4) of groupwise gene-
expression profiles and (Supplementary Fig. 17e, f).

Similarly, we identified 296 ( + 145 WikiPathway / CMC gene-set)
unique pathways out of 6,120 ( + 2,865 WikiPathway / CMC gene-set)
with differential liability profiles (Fig. 6b, Supplementary Fig. 17g,
Supplementary Fig. 19, Supplementary Data 11). Given the absence of
large deeply phenotyped cohorts for SCZ, we turned to a different
strategy for the identification of groupwise differences in endophe-
notypes and interpretation of pathway level liability profiles based on
endophenotype approximation via endophenotype risk-scores. Prior
to application of SCZ, we carefully benchmarked this approach in CAD
(see Methods, Supplementary Fig. 20).

These analyzes resulted in 68 endophenotypes (out of 1000, see
Methods) that differ reliably in at least one SCZ patient group (Fig. 7a,
Supplementary Data 12). Jointly, these results support the notion of
fundamental differences in endophenotypeprofiles across SCZpatient
strata that are linked to distinct liabilities across multiple biological
processes.

Group 2 showed decreased estimatedwhite blood cell counts and
increased neutrophil-to-lymphocyte ratio (NLR), as well as lower esti-
mated CRP levels, suggesting a lower inflammatory state. In line with
these findings, group 2 showed decreased liability towards immune-
related pathways, cytokines and inflammatory response and comple-
ment activation (Figs. 6b, 7b). Moreover, group 2 exhibited a
decreased liability towards the development of depression (Fig. 7a,
bottom) and an overall better estimated cognitive performance based
on various indicators (Fig. 7a, bottom, Supplementary Fig. 21a, b). This
was accompanied by a lower predicted expression of presynaptic
genes, genes related to synaptic density, and mitochondria as well as
an increase in genes related to oxidative damage (Figs. 6b, 7b). Inter-
estingly, group 2 also showed an increase in fractional anisotropy in
the corpus callosum based onMRI42 with an opposite effect in group 1
(Fig. 7a). Previously, the latter was reported to be decreased in SCZ
patients compared to controls. In summary, we conclude that group 2
represents a population of SCZ patients with a less severe disease
status.

However, group 2 was characterized by a significantly higher
predisposition to metabolic syndrome (MetS) with higher levels of 3
out of 5 risk factors used to define MetS, including (1) higher glucose
and HbA1c, (2) lower HDL cholesterol as well as (3) increased weight,
BMI and hip circumference (Fig. 7c). It is well known that overall SCZ
patients have an increased risk for MetS43, but unclear whether this
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Fig. 6 | CASTOM-iGExbased identificationof distinct patient subgroups in SCZ.
a Uniform manifold approximation and projection (UMAP) first 2 components of
gene T-scores in DLPC standardized across n = 24,764 SCZ patients, corrected for
PCs, andmultiplied by Z-statistic SCZ associations. Each dot represents a patient in
the transformed UMAP space colored by the cluster membership. b Wilcoxon-
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comorbidity would result from a distinct genetic risk factor profile. In
line with this observation, group 2 showed genetic liability towards
reduced insulin signaling including lower expression of genes mod-
ulating the positive regulation of insulin secretion upon glucose sti-
mulation and increased liability towards higher activity of oxidative
damage related genes (Fig. 7b, Supplementary Data 11). In line with
these findings, group 2 also showed an increased liability towards non-
alcoholic fatty liver disease, known to be associated with MetS44

(Fig. 7b). These results supplement previous clinical observation on
the existence of a MetS subgroup with a genetic and biological basis.

Conversely, group 1 captures a patient group of severe SCZ, with
increased inflammatory and substantially reduced cognitive perfor-
mance parameters (Fig. 7a, Supplementary Fig. 21a, b). These differ-
ences on the endophenotype level are reflected in a reduced
expression of proteasome degradation, interferon II signaling, plasma
membrane, and endoplasmatic reticulum (ER) related genes (Fig. 7b).

In contrast, genes related to cytokine and inflammatory response,
complement activation as well as related to the presynaptic com-
partment and postsynaptic density were upregulated (Figs. 6b, 7b).

Jointly, these observations suggest the existence of at least two
SCZ patient populations with distinct endophenotypes and consistent
biological liability profiles aswell asother twogroups that represent an
intermediate configuration of pathways and endophenotype liabilities.

In order to validate these observations, we turned to a smaller
but clinically phenotyped longitudinal cohort of SCZ patients
(PsyCourse)45. Following the prediction of gene expression levels and
projection of n = 556 SCZ patients onto the PGC-SCZ patient-derived
clustering structure, we reproduced again 3 groups of patients out
with similar proportions, excluding the smallest group 4, which did
have very few projections (Supplementary Fig. 21c, d). Comparison of
differences in n = 19 clinical phenotypes revealed a significantly longer
duration of illness in group 1 compared to group 2 (p-value = 0.02) and
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more frequent clinical treatment as in or outpatient (p-value = 0.04)
indicative of an increased disease severity in group 1 (Fig. 7d). In
addition, group 1 showed a trend reduction in one of the cognitive
performance indicators digital symbol test and trail making test
compared to group 3 (dg_sym p-value = 0.055 and tmt_A_rt, p-value =
0.078) (Fig. 7d).

In conclusion, CASTom-iGEx patient stratification methodology
detected distinct patient groups exhibiting different genetic liabilities
that translate into divergent clinical parameters across different
complex diseases.

Discussion
Here, we investigated how heterogeneity in polygenic risk factor dis-
tribution can contribute to heterogeneity in clinical parameters,
severity, and potential treatment response across patients suffering
from complex diseases.

We start to resolve this central problem on the road to stratifi-
cation medicine by developing a multilayered machine learning
approach that relies on the stepwise aggregation of the genetic signals
onto biologically relevant entities (genes and pathways) on a per-
individuum level. We introduce the concept pathway level association
studies and highlight the added value of this strategy in terms of
identifying biologically directly interpretable, tissue specific associa-
tions and increased detection power.

We show that aggregation of genetic liability through tissue spe-
cific gene expression enables the identification of distinct patient
subgroups. This approach enables the unsupervised stratification of
patients that exhibit distinct genetic liabilities across biological pro-
cess into subgroups with diverse endophenotypic and clinical profiles.
Importantly, this level of biologically and clinically relevant multi-
variate stratification was not achieved by traditional PRS analysis,
highlighting the added value of the CASTom-iGEx approach.

Our results show that the effects of common disease associated
genetic variants converge onto distinct cell type specific genes and
molecular pathways within subgroups of patients, supporting the
notion of distinct patient biotypes. Most importantly, we extensively
evaluate well known confounders in genetic stratification analyzes and
show that our discovered patient grouping is not compromised by the
former.

We show the general feasibility of unbiased patient stratification
by applying the CASTom-iGEx pipeline to two fundamentally distinct
complex diseases. Moreover, we demonstrate the added value of the
biologically informed genotype-based patient stratification using
imputed gene expression profiles through detailed clinical and endo-
phenotypic characterization of the discovered patient strata.

This capacity of the CASTom-iGEx pipeline is not dependent on
the specific gene expression imputation tool. While we utilize the
imputation method PriLer, similar results can be obtained with other
imputation methods that can be combined with CASTom-iGEx in a
modular plug-and-play fashion. For example, replacing PriLer with
gene expression predictions using previously published EpiXcan in
conjunction with the CASTom-iGEx pipeline on the UKBB yields
highly similar results for CAD with respect to patient grouping, group-
specific pathways and endophenotypes (Supplementary Fig. 22,
Supplementary Text).

Using the standard CASTom-iGEx workflow, we identify 5 groups
of CAD patients with fundamentally distinct risk and disease-relevant
endophenotype profiles. This includes a healthier population, a
population with reduced levels of blood-circulating LDL, and a
decreased frequency of hyperlipidemia concomitant with higher pre-
dicted activities of vesicle mediated transport. Finally, we identify a
patient group that exhibits a stronger role of inflammatory processes,
adding a genetic foundation to the role of inflammation in CAD46.
Similarly, stratification analysis of schizophrenic individuals revealed
substantial heterogeneity in risk factor distribution related to

pathomechanisms that have long been implicated to play a key role in
SCZ. These include genes and pathways related to neurotransmission,
synapse biology, immune system activation and oxidative damage.
These analyzes also uncovered the existence of a SCZ patient group
with substantially increased genetic loadings for better cognitive
performance and lower liability for inflammatory processes, while at
the same time showing a higher genetic risk profile for metabolic
syndrome.

These results showcase the general utility of the CASTom-iGEx
approach in the deconstruction of phenotypic and clinical hetero-
geneity across patient populations and eventually facilitate precision
medicine approaches. While the current results represent an impor-
tant next step along this road, several key challenges remain.

First, theCASTom-iGEx strategywas only applied in the context of
individuals with European ancestry. Application of European ancestry
trained models to individuals with Indian ancestries showed overall
poor performance and replication of results (Supplementary Fig. 23),
consistent with previous observations47,48 and requires adaption to a
trans-ancestry setting. However, the latter likely requires not only tai-
loring of statistical models but also generation of new cohorts: While
most GWAS hits replicate across populations, there exists substantial
variability in effect sizes47 and direction of effects for subthreshold
associations, concomitant with limited transferability of bona-fide PGS
across populations48.

As consequence, the generalizability of gene risk score (GRS)
based models such as CASTom-iGEx to a trans-ancestry setting
through adapted statistical methods49 requires the careful calibration
using ancestry specific and trans-ancestry GRS models. Moreover,
more ethnically diverse cohorts of matching genotype and gene
expression data of disease relevant tissues of sufficient size are
needed50.

Second, the approach presented here constitutes only one step
forward towards the biological and translational operationalization of
common variants, as it can only be truly effective when combinedwith
other tools and data modalities. Environmental and lifestyle factors
dramatically influence disease risk and disease course. Thus, it will be
oneof the critical next steps to integrate genetic-based insights such as
those provided by CASTom-iGEx with deep patient phenotyping
information in the context of an unsupervised multi-modal patient
clustering framework. In particular, integrating the present approach
with multi-omic, imaging, clinical, and exposome-derived data mod-
alities using, e.g., network fusion methods, represents promising ave-
nues to increase the predictive power of patient stratification,
specifically towards the prediction of treatment response.

Methods
All research activities described in this manuscript comply with all
relevant ethical regulations. No new data was collected and re-analysis
of existing UKBB data was approved by the UKBB.

Prior Learned elastic-net regression to model gene expression
We developed a methodology called PriLer (Prior Learned elastic-net
regression) that estimates gene expression from cis‐acting SNPs,
combining elastic-net regression with biological annotation of indivi-
dual genetic variants defined as prior. This includes for example
annotation information such as cell type specific chromatin state or
GWAS association signal. Since the relevance of each considered bio-
logical annotations is a priori unknown, we implemented an iterative
learning procedure to obtain optimized weights for each prior in a
nested cross-validation fashion (Supplementary Fig. 1 Module 1, Sup-
plementary Fig. 24).

Namely, let N be the total number of genes expressed in a tissue
across M individuals, P the total amount of SNPs and indels across all
genome and K the number of prior features included. For n = 1, . . . ,N,
we indicate with Yn the M-length vector of expression of gene n and
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withXn the genotypematrixM ×Pn of cis-effects for genenwherePn is
the number of cis-variants distant from the corresponding transcrip-
tion starting site (TSS) not more than 200 kb. We used 200 kb instead
of the usual 1Mb windows because it has been shown from 3D archi-
tecture of the genome that >90% variants/non-coding regulatory ele-
ments modulating gene expression in cis are located within 200 kb of
the respective TSS1,2. Prior information is modeled as a P ×K binary
matrix Awhere 1 indicates that variant p intersects prior feature k (e.g.
is in an open chromatin region of cell type k).

In elastic-net regression without prior information, gene expres-
sion is modeled as a function of cis-variants effects, where the
regression coefficients for each gene n are found by solving

minβn

1
M

k Yn � Xnβnk22 +
X

p = 1,...,Pn

L βn,p,λn,αn

� �2
4

3
5 ð1Þ

with L being the elastic-net penalty function specific for variant p:

L βn,p,λn,αn

� �
= λn

1� αn

2
β2
n,p +αnjβn,pj

� �
ð2Þ

The problem is solved separately for each gene using glmnet R
package51 with λn and αn hyperparameters controlling shrinkage of
regression coefficients and ridge/lasso contribution and are optimally
found via nested 5-fold cross validation.

In PriLer instead, we hypothesize that variants carrying biological
prior information are more likely to be putative regulatory variants
(reg-SNPs) i.e. regulating at least one gene. To that end, the penalty
referring to a variant p is multiplied by a prior coefficient vp obtained
as a nonlinear combination through the sigmoid function of prior
information in matrix A:

vp = 1�
1

1 + exp �P
k = 1,...,KγkApk

� � ð3Þ

where γk represents the priorweight associated to prior feature class k
(vector form γ) and is automatically learned by PriLer through an
iterative procedure. Thus, PriLer aims at solving the following problem
with respect to βn for all the genes and the γ prior weights vector:

min
γ,βn,n = 1,...,N

X
n= 1,...,N

1
M

k Yn � Xnβnk22 +
X

p = 1,...,P

vpL βn,p,λn,αn

� �" #
+ E k γk22

( )

ð4Þ
Note that since we consider all the genes together, we now iterate
through P variants although regression coefficients for variants not in
cis-regions of a certain gene n are set to 0. The last term of the
objective function represents a regularization term for prior weights
and the number of hyperparameters is 2N + 1 i.e. gene-specificλn,αn

pairs and E. We used the sigmoid function to model vp to introduce a
smooth non-linear change representing variant relevance, ensure the
non-negativity of the penalty term as well as differentiability in all the
domain of γ, and introduce a saturation effect such that the penalty
term will smoothly and boundedly decrease to zero.

Theproblem is solved in a 2-step iterativeprocedure. Initially, prior
weights are set to 0 for all theK features. Thefirst stepminimizes PriLer
function with respect to βn separately for each gene keeping γ as fixed
(hence vp) via cyclical coordinate descendent algorithm as imple-
mented in glmnet R package; the second step minimizes the PriLer
function with respect to γk for k = 1, . . . ,K keeping βn fixed through
globally-convergent method-of-moving-asymptotes implemented in
nloptr R package52. The algorithm stops until convergence is reached in
term of the maximum number of iterations (default = 20) or minimal
decrease (default = 0.001) of the objective function fromprevious step.

In general, the lower the prior coefficient vp, the less will the
corresponding regression coefficient for variant p shrink to zero for all
the genes. Hence, the more relevance the variant will have in the gene
expression prediction. On the other hand, the weights for the prior
features γk are dependent on putative reg-SNPs across all the genes
that have prior information not zero: the more there are reg-SNPs
intersecting a certain prior feature, the higher the correspondent prior
weight will be. It is also worth noting that, for prior features inter-
secting a considerable higher number of variants, the corresponding
priorweight will be higher since by chance that prior feature intersects
more reg-SNPs. However, in the iterative procedure, if that prior fea-
ture is not actually relevant for that tissue-regression model, the cor-
responding weight remains stable and does not increase (see
“Evaluation of prior weights selection in PriLer through random prior
simulation” section).

Since PriLer uses the combined information across all genes to
derive prior weights, we do not want to introduce noise in that esti-
mationdue to genes that are poorly explainedby cis-effects. Hence,we
estimate prior weights using only heritable genes for which a non-null
proportion of variation in gene expression is determined by genetic
effects. The list of heritable genes for GTEx and CMC are downloaded
from http://gusevlab.org/projects/fusion/ database of TWASmethod12

(reference functional data), where heritability is estimated for each
gene from cis-SNPs via REML algorithm implemented in GCTA53.
Heritable genes are defined as those having heritability p-value <0.01
estimated in GTEx v7 (https://gusevlab.org/projects/fusion/weights/
GTEX7.txt) and CMC. A gene expression prediction model is built for
all the genes that have cis-variants in the predefinedwindow. In case of
not heritable genes, we use prior coefficients vp estimated from heri-
table genes only.

To find an optimal hyperparameter configuration and evaluate
gene expressionpredictionmodels, we implementedPriLer in a nested
5-fold cross-validation (CV) setting dividing the procedure in 4 steps
(Supplementary Fig. 1). The first step involves heritable genes only and
estimates gene expression using elastic-net regression (enet) without
prior information. The inner CV finds the optimal αn,λn combination
for each gene n separately that minimizes the mean squared error
(MSE) on test folders, the outer CV instead builds enet models based
on the optimal hyperparameters and evaluates each gene-model via
average R2 on the test folders (R2

cv).
The second step uses αn,λn combination found in step 1 and

builds PriLer models in the outer CV across all heritable genes for
different values of hyperparameter E, which controls γmodule. The
optimal E parameter is chosen as the one minimizing MSE on the
test folds and for that hyperparameters combination αn,λn and E we
evaluate PriLer performance based on R2

cv. The third step creates a
final model for each gene applied to all M samples that will be fur-
ther used in the external prediction to genotype-only data. Hence,
from a single CV, optimal αn,λn combination for enet is found and
used in PriLer together with optimal E parameter found in step 2.
Finally, the fourth step is used to build PriLer (and enet) models for
not heritable genes: step from 1 to 3 are repeated but prior weights
γk and consequentially prior coefficients vp are kept fixed as
obtained in step 2 and step 3 (for evaluation and final model
creation).

In summary, we obtain R2
cv that estimates PriLer and enet perfor-

mance, gene expression prediction models together with the corre-
sponding R2 computed across all samples and for all the genes having
cis-variants in 200 kb window.

The algorithm we implemented is inspired by the Lirnet
algorithm54, however, PriLer is adapted to large reference panels of
matchedgenotype andgene expressiondata, uses a simplified formula
for computing the prior coefficients, and optimizes α and λ penalty
parameters instead of using the same penalty across all genes, thus
allowing for differences in gene sparsity.
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We introduce in PriLer the possibility to model also effects from
cofounders to gene expression and variant-gene interaction in a linear
manner. In this case, the first term of the objective function repre-
senting the prediction squared error becomes:

k Yn � Xnβn�Zμn k22 ð5Þ

With Z theM ×C confoundermatrix unique to all the genes and μn the
corresponding regression coefficient specific to gene-modeln. The
penalty factor term however does not change, being applied only to
genotypedata. This is practically achieved via thepenalty.factoroption
of glmnet set to zero in correspondence of the confounders position
so that they are included in all the models for gene expression.

Finally, in order to evaluate PriLer performance aswell as enet, we
used R2 in the sense of fraction of deviance explained by the model as
implemented in glmnet (dev.ratio). In ourmodel, we explicitly account
for linear confounder effects as well as their interaction with cis-
variants due to the probable not orthogonal effect, especially, between
variants and genetically derived ancestry components. However, we
are mostly interested in the variance that can be explained by geno-
type only. Consider bY as the predicted gene expression vector esti-
mated by the model for a certain gene

bY : =Xbβ+Zbμ ð6Þ

and �Y the mean original gene expression, let k �k2 be the Euclidean
norm operator and h�,�i be the scalar product operator among 2 vec-
tors, then R2 can be formulated as

1� k Y � bY k22
k Y � �Y k22

=
k bY � �Y k22 + 2hY � bY ,bY � �Y i

σ2
Y

ð7Þ

For this reason,we splitR2 in three components:R2
g +R

2
c +R

2
g,c (see

Appendix A) with

R2
g =

k cW � �Wk22 + 2<W � cW ,cW � �W>
σ2
Y

ð8Þ

R2
c =

k bV � �bVk22
σ2
Y

ð9Þ

R2
g,c =

2<W � �W ,bV � �bV>
σ2
Y

ð10Þ

where cW : =Xbβ is the predicted genotype effect, W : =Y�Zbμ is the
gene expression vector corrected for the confounder effect hence
carrying supposedly only the genotype effect and �W the correspond-
ingmean, bV : =Zbμ is the predicted confounder contribution and �̂V the
corresponding mean. Hence, R2

g represents the part of the variance in
gene expression that is due to the genetic component, R2

c is the con-
tribution of confounders and R2

g,c represents the joint effect between
two. For simplicity, throughout the text we will refer to R2

g as R2 and
average R2

g in cross validation as R2
cv.

Reference panels for training gene expression models
Gene expression prediction models are built based on matched data
composed of gene expression and genotype individual dosages, also
referred to as reference panels. We used GTEx v6p25 that includes
donors across 44 non-diseased post-mortem tissues and cell lines and
CommonMind Consortium (CMC) Release126 composed of RNA-Seq
data extracted from post-mortem dorsolateral prefrontal cortex
(DLPC) for patients with schizoaffective disorders and controls.

For genotype preprocessing, REF and ALT alleles were aligned to
human reference genome hg19 and variants were filtered out based on
imputation quality score (INFO) < 0.8, minor allele frequency (MAF) <
0.05 and deviation from Hardy-Weinberg Equilibrium (HWE) P < 5e-5
as well as removal of multiallelic position. Since GWAS data is
optionally used as prior information in PriLer, genotype data was
matched with CAD and SCZ GWAS summary statistic obtained from10

and11 in case of GTEx and only SCZ in case of CMC such that only
variants with the same position and REF/ALT annotations are kept.
Genotype probabilities were then converted to 0-2 dosages where 0
refers to REF/REF configuration and the final number of variants was
6,486,416 and 6,491,178 for GTEx and CMC respectively across 22
autosomal chromosomes.

For RNA-sequencing data, we followed the respective guidelines
used to process data for eQTL analysis by the 2 consortia. In case of
CMC, we used ‘SVA corrected excluded ancestry’ gene expression
processed data that includes residuals from weighted regression
through voom-based log transformed CPM (read counts per million
total reads) and correspondent observation weights corrected for
chosen confounders (see26 for details). In case of GTEx instead, we
excluded poor quality samples (sample attributes SMAFRZE column
equals to ‘EXCLUDE’), considered only the ones matching genotype
data and excluded tissues with less than 70 resulting samples.We then
followed the GTEx guidelines for eQTL analysis8 i.e. for each tissue,
genes such that RPKM>0.1 in at least 10 individuals and number of
reads ≥ 6 in at least 10 individuals were retained, RPKM expression
values were quantile normalized to the average empirical distribution
observed across samples and expression values were inverse quantile
normalized to a standard normal distribution for each gene across
samples. We additionally excluded from the analysis tissues sex-
specific and tissues not matching any prior features (see below),
resulting in a total of 33 tissues. Finally, genes were annotated using
Ensembl on GRCh37 via biomaRt (Bioconductor), in order to define
transcription starting site (TSS).

For covariates included in the PriLermodel, we followed again the
guidelines for eQTL analysis in the respective consortia. In particular,
for CMC we used 5 ancestry components provided and computed via
GemTools based on a set of high-quality autosomal SNPs from pre-
imputed data. For GTEx instead, we included as covariates individual
sex, genotype array platform, PEER components calculated from nor-
malized expression matrices for each tissue separately with the num-
ber of PEER factors determined as a function of the tissue sample size
(N): 15 factors for n < 150, 30 factors for 150 ≤n < 250and 35 factors for
N ≥ 250 and finally the first 3 principal components (PCs) from gen-
otype data computed using EIGENSTRAT as implemented in Ricopili
(see (5) for details). We included in our analysis only samples with
European ancestry: CMC ethnicity ‘Caucasian’ and GTEx reported race
‘white’ for a total of 478 samples (212 controls and 266 cases) and 377
respectively.

Our methodology incorporates prior information into elastic-net
regression. To that end, we used as prior features cell-type specific
open chromatin regions one-hot encoded and included CAD GWAS
summary statistic55 for tissues related to CAD and SCZGWAS summary
statistic41 for brain lines and immunological cell types. GWAS infor-
mation is converted into binary using 0.05 and 0.01 nominal p-values
threshold respectively. This disease-specific GWAS thresholds were
chosen so that the number of variants having the GWAS prior infor-
mation was comparable for the two diseases (see GWAS threshold to
definePriLerprior section). Importantly,we show that theuseofGWAS
did not lead to anoverfit in trait associationnor a significant difference
in the distribution of PriLer performances (see GWAS prior does not
overfit CADassociations onCARDIoGRAMsection). The resultingprior
matrix is a binary formatwith dimension n. of variants times n. of prior
features included in the tissue-specific model with 1 indicating either
the variant intersects an open chromatin region for that cell type or it

Article https://doi.org/10.1038/s41467-024-49338-2

Nature Communications |         (2024) 15:5534 14



passes the nominal GWAS threshold. Open chromatin regions are
derived from H3K27ac ChIP-seq data obtained from the Epigenome
Roadmap Project as well as ENCODE and merged together (see Sup-
plementary Data 13 for full sample list). In addition, H3K27ac and
ATAC-Seq feature-based profiles are combined and included for heart-
related tissues obtained from56 (GSE72696). For SCZ and brain related
tissues, we used ATAC-Seq profiles from human post mortem pre-
frontal cortex neuronal cells from57 (GSE83345). All annotation infor-
mation can be downloaded from the supplemental website at https://
doi.org/10.6084/m9.figshare.24625350.v1. The brain related prior
features from ATAC-Seq (FPC_neuronal_ATAC_R2 and FPC_neur-
onal_ATAC_R4) were modified due to the reduced number of included
putative gene regulatory elements (GREs) compared to the H3K27ac
derived features (number of GREs 44,475 and 34,883 versus mean
number 128,817.3) and a consequence reduction in the number of
variants with those priors that would have greatly penalized the cor-
respondent PriLer prior weight (see below for detail). Hence, for each
GREs of these 2 prior features, we extended it by half median length of
GREs in H3K27ac data (1192) in both directions.

With thepurpose of not introducingnoise in the selection of these
prior features, the weights are solely estimated from heritable genes
(see “ Prior Learned elastic-net regression to model gene expression”
section). The complete list of tissue-specific gene expression model,
number of samples, number of genes and prior features can be found
in Supplementary Table 1 and tissue specific usage for each prior in
Supplementary Data 13. Tissue-specific trained models are also avail-
able here https://doi.org/10.6084/m9.figshare.22347574.v2.

Comparison of Priler against existing methods: FUSION, Pre-
diXcan and EpiXcan
We compared PriLer to TWAS12 (FUSION), PrediXcan13 and EpiXcan27

build on GTEx v6p (EpiXcan v7p) and CMCdatasets. Summary of tissue
models for PrediXcan were downloaded from https://s3.amazonaws.
com/predictdb2/deprecated/download-by-tissue-HapMap/ and https://
github.com/laurahuckins/CMC_DLPFC_prediXcan/blob/master/DLPFC_
oldMetax.db.tar.gz, for FUSION from https://data.broadinstitute.org/
alkesgroup/FUSION/WGT/GTEx.ALL.tar andhttps://data.broadinstitute.
org/alkesgroup/FUSION/WGT/CMC.BRAIN.RNASEQ.tar.bz2 and for
EpiXcan from https://bendlj01.dmz.hpc.mssm.edu/epixcan/about.php
(however, since then the models were moved to https://www.synapse.
org/#!Synapse:syn52745629).

To directly compare gene-wise performances between PriLer and
other tools, we focused on Liver tissue only. First, we compared gene
cor2cv between PriLer and each of the rest of the tools (Supplementary
Fig. 3a). For comparisons with PrediXcan and FUSION we used cor2cv
defined as squared correlation between Wtest and cWtest defined as
adjusted gene expression and predicted expression from genetic
effects respectively combing all test folds (similarly to what was
computed in PrediXcan and FUSION). For comparison with EpiXcan,
we used the squared correlation betweenWtest andcWtest but averaged
across test folds, in order to use the same procedure that was used in
EpiXcan). We consider only genes in PriLer having any 200 kb cis-
variants and being also present in FUSION, PrediXcan or EpiXcan
summary statistics. In addition, we compared the number of reg-
ulatory SNPs defined as SNPs selected by each model to predict
expression of at least one gene (Supplementary Fig. 3b). In order to
assess thebiological relevance of the regulatory SNP sets,we evaluated
their enrichment in a catalog of 410 functional genomic annotations
comprising DNAse hypersensitivity sites (http://hgdownload.cse.ucsc.
edu/goldenpath/hg19/encodeDCC/wgEncodeRegDnaseClustered/
wgEncodeRegDnaseClusteredV3.bed.gz) across 124 cell types tissues
from ENCODE58, 338 transcription factors in 130 cell types from
ENCODE59 and H3K27ac regions across 87 cell types and tissues
(Supplementary Data 13).

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/
encRegTfbsClustered/encRegTfbsClusteredWithCells.hg19.bed.gz).

For the latter analysis, we focused on EpiXcan only as it was
already shown that this tool shows the highest enrichment for likely
biologically relevant SNPs. To that end, we determined the number of
regulatory SNPs in the liver model from PriLer and EpiXcan that did
overlap and did not overlap with each of the 410 functional genomic
annotations. We then performed Fisher’s exact test for each annota-
tion separately to determine whether PriLer selected regulatory SNPs
weremore likely to be enriched compared to EpiXcan regulatory SNPs
or vice versa. Resulting p-values were corrected for multiple testing
using the BH method. Results were ordered by odds ratios of enrich-
ment and plotted in Supplementary Fig. 3c (left y-axis). In addition,
cumulative fraction of annotations significantly enriched (FDR ≤ 0.01)
among PriLer selected SNPs (red line, right y-axis) or EpiXcan (black
line, right, y-axis) is also depicted in Supplementary Fig. 3c.

Genotype-only datasets preprocessing
To impute gene expression from PriLer in large-scale genotype-only
datasets, the first step is to match genetic data with reference panels
(GTEx and CMC). In particular, for UK Biobank (UKBB), we used
imputed data from third release, aligned REF and ALT allele to hg19
and excluded samples due to non-white British ancestry and with-
drawn consent. As post-imputation QC, we filtered variants based on
SNP call rate <0.98, INFO<0.8, MAF < 0.05 and HWE p-value < 1e-6 as
well as multiallelic positions. We then excluded relatives up to 3rd
degree based on kinship matrix such that the largest amount of sam-
ples not related would be retained, following UKBB guidelines60.
Additional samples with no matching submitted and inferred gender
and poor-quality ones being outliers for heterozygosity and missing
rates are excluded. Our final set after quality control included 340,939
individuals. Genotype data was separately matched with previously
processed GTEx and CMC imputed genotype excluding variants hav-
ing differences in ALT frequency>0.15 (asdescribed inAguet et al. 25 to
match GTEx and 1000 Genome reference) resulting in 5,728,140 and
5,774,100 variants respectively. For CAD application, we used as
replication 9 case-control European ancestry cohorts from CARDIo-
GRAM consortium28: German Myocardial Infarction Family Studies
(GerMIFS) I, II, III, IV, V, the LUdwigshafen RIsk and Cardiovascular
Health Study (LURIC), Cardiogenics (CG), Wellcome Trust Case Con-
trol Consortium (WTCCC),Myocardial InfarctionGeneticsConsortium
(MIGen). Pre-imputation QCwas performed on each cohort separately
using the following criteria: individual call rate ≥ 0.98, SNP call rate >
0.98, minor allele frequency (MAF) > 0.01, concordant recorded and
genotype-derived gender, population outliers excluded (deviate
beyond mean ± 5x standard deviation) for top two dimensions
from the multidimensional scaling (MDS) analysis, PI_HAT <0.0625
(individuals more distant away than fourth-degree relatives) in the
identity-by-descent (IBD) analysis, heterozygosity rate within mean ±
3 x standard deviation, and HWE p-value > 1e-6. Imputation was
performed on each cohort separately using the Haplotype
Reference Consortiumpanel on the Sanger Imputation Server (https://
www.sanger.ac.uk/science/tools/sanger-imputation-service). Post-
imputation QC was then performed with the following criteria; SNP
call rate > 0.98, MAF >0.05, HWE p-value > 1e-6, INFO score ≥ 0.8,
multiallelic position excluded and PI_HAT<0.0625 in IBD analysis for
individuals. We then considered all the cohorts together to remove up
to fourth-degree relatives (PI_HAT <0.0625), keeping if possible indi-
viduals annotated as cases and/or with the lowest missing rate. Finally,
only variants in common across all the cohorts were retained as well as
with the aforementioned UKBB-GTEx matched genotype set and such
that ALT frequency differences for each pair of cohort/UKBB/GTEx
dataset did not exceed 0.15. This procedure yield to a total of 26,681
individuals across the 9 cohorts and 4,257,718 variants matching
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CARDIoGRAM cohorts, UKBB and GTEx genotyping data. GTEx tissue
models adopted for CAD analysis are composed of 2 adipose tissues
(subcutaneous and visceral omentum), adrenal gland, 2 artery tissues
(aorta and coronary), 2 colon tissues (sigmoid and transverse), 2 heart
tissues (atrial appendage and left ventricle), liver and whole blood.

For SCZ application instead, we used 36 PGC cohorts of European
ancestry fromPsychiatric Genomic Consortium (PGC) for SCZwave241.
Following PGC guidelines, for each cohort we excluded imputed var-
iants based on MAF <0.01, INFO <0.6, multiallelic positions and var-
iants that were missing in at least 20 samples (genotype certainty
<0.8). Prior to matching variants with GTEx and CMC, we filtered the
reference panels such that INFO ≥0.6 and MAF ≥0.01 based on Eur-
opean individuals. Finally, variants with ALT frequency differences
across all possible pair of dataset > 0.15 are excluded, obtaining a total
of 5,912,207 and 5,934,252 SNPs and Indels when matching GTEx and
CMC respectively. Individuals across all the cohorts are excluded if
diagnosis is not available and samples are duplicated/related or a total
of 55,419 individuals. GTEx tissue models adopted for SCZ analysis are
composed of 8 brain tissues (caudate basal ganglia, cerebellar hemi-
sphere, cerebellum, cortex, frontal cortex BA9, hippocampus, hypo-
thalamus, and nucleus accumbens basal ganglia) and cell EBV
transformed lymphocytes while CMC tissue model is based on dor-
solateral prefrontal cortex.

UKBB phenotype pre-processing and coronary artery disease
diagnosis definition
UKBiobank is a large-scale biomedical database and research resource
containing genetic, lifestyle and health information from half a million
UK participants60. We used the available deep phenotyping in two
different contexts: i) to define CAD and extract CAD related pheno-
types in order to perform TWAS and PALAS as well as detect endo-
phenotype differences and treatment response in CAD cases using as
genotype data the matched dataset with CARDIoGRAM cohorts, ii) to
perform TWAS and PALAS analysis for SCZ related phenotypes and
build endophenotype risk scores (endo-RS) weights tomodel endo-RS
in external cohorts such as PGC.

Similarly to previous CAD HARD definition61, CAD diagnosis was
determined by either hospital episode or self-reported via ques-
tionnaire combining ICD10 and ICD9 codes for myocardial infarction
and ischemic heart diseases (I21-I24 and 410-412), old myocardial
infarction (I25.2), OPCS-4 codes for procedures for coronary artery
bypass graft surgery (CABG) (K40-K46), percutaneous transluminal
coronary angioplasty (PTCA) (K49-K50, K75) and self-reported heart
attack, PTCA, CABG and triple heart bypass. In addition, we used CAD
SOFT definition61 to define reference set composed of controls for
gene T-scores computation (see “From imputed gene expression to
gene T-scores” section). CAD SOFT phenotype was defined with the
same requirement of CADHARDplus individuals reporting ICD9 codes
for angina pectoris and coronary atherosclerosis (413-414), ICD10
codes for angina pectoris and chronic ischemic heart disease (I20, I25),
and self-reported angina.

Phenotypes we had access under application numbers 34217 and
25214 were processed for subsequent analysis using PHESANT
software62. PHESANT automatically converts UKBB phenotypes dis-
tribution to continuous inverse-rank normalized, ordered categorical,
unordered categorical or binary, depending on original data type
(continuous, integer, categorical single or multiple). Based on the final
category, the correct generalized linear model was applied during
TWAS and PALAS: Gaussian for continuous, logistic for unordered
categorical and binary or ordinal logistic regression for ordered cate-
gorical. In addition, PHESANT automatically removes phenotypes
recorded for less than 500 individuals and constant ones across the
samples.

Original phenotypes not converted via PHESANT are only used in
hypothesis-driven CAD endophenotype analysis in which clinical

phenotypes are tested (35 in total, nominal significant results are
shown in Supplementary Data 7).

SHIP-Trend cohort preprocessing
The Study of Health in Pomerania (SHIP-Trend) is a population-based
cohort study inWest Pomerania (northeast ofGermany) and is focused
on the prevalence and incidence of common population-relevant dis-
eases and their risk factors. Baseline examinations for SHIP-Trendwere
carried out between 2008 and 2012, comprising 4420 participants
aged 20 to 81 years. Study design and sampling methods were pre-
viously described35.

Regarding genotyping, data was collected from nonfasting blood
samples. A subset of the SHIP-Trend samples was genotyped using the
Illumina Human Omni 2.5 array, while the majority of samples were
genotypes using Global Screening Array (GSA-24v1). Genotypes were
determined using the GenomeStudio 2.0GenotypingModule (GenCall
algorithm). Individuals with a genotyping call rate <94%, duplicates
(based on estimated IBD), and mismatches between reported and
genotyped were removed. Genotypes were imputed using the HRCv1.1
reference panel and using the Eagle and minimac3 software imple-
mented in the Michigan Imputation Server for pre-phasing and
imputation, respectively. Before imputation QC steps include the
removal of SNPs with a HWE p-value < 0.0001, call rate <0.95, mono-
morphic SNPs, variants having position mapping problem from gen-
omebuild b36 to b37, duplicate IDs, or with inconsistent reference site
alleles. As post-imputation QC steps, variants withMAF >0.05, HWE p-
value > 1e-6, INFO score ≥ 0.8 were retained and multi-allelic positions
were excluded. Individuals more distant away than fourth-degree
relatives in the identity-by-descent (IBD) analysis were kept (PI_HAT <
0.0625). The resulting variants were matched with the final set of
4,257,718 variants harmonized for CARDIoGRAM cohorts, UKBB and
GTEx genotyping data (CAD-matched variants). SHIP-Trend variants
were matched based on same position and REF/ALT annotation. Var-
iants with ALT frequency differences between SHIP-Trend cohort and
GTEx not exceeding 0.15 were kept. This procedure yield to 4,240,949
SNPs in the SHIP-Trend cohort also available in the CAD-matched
variants set across 4119 individuals. Finally, gene expression was
imputed based on previously trained models of liver and whole
blood tissues using CAD-matched variants (see “From imputed gene
expression to gene T-scores” section).

Regarding transcriptome analysis, RNA was prepared from whole
blood under fasting conditions using the PAXgene Blood miRNA Kit
(Qiagen,Hilden,Germany). 500 ngof RNAwas reverse transcribed into
cRNA and biotin-UTP-labeled via Illumina TotalPrep-96 RNA Amp
Kit (Ambion). 3000 ng of cRNA were hybridized to the Illumina
HumanHT-12 v3 Expression BeadChips, followed by washing steps as
described in the Illumina protocol. Gene expression raw intensity data
was generated with the expression arrays were exported from Illumi-
na’s GenomeStudio V 2010.1 Gene Expression Module to the R
environment and processed (quantile normalization and log2-trans-
formation) with the lumi 1.12.4 package from the Bioconductor open
source software as described elsewhere63. Quality-controlled gene
expression data and genotyping data were available for 976 SHIP-
TREND samples.

PsyCourse study pre-processing
The PsyCourse Study is a longitudinal, multi-center observational
study of patients suffering from severe mental disorders (mainly
schizophrenia, bipolar disorder, and recurrent depression) as well as
healthy control that were subjected to comprehensive neuropsycho-
logical testing45 and assessment of disease history. All participants
were subjected to genotyping using the Infinium Global Screening
Array-24 Kit, version 3.0. Prior to imputation, SNPs were filtered based
onMAF≥ 0.01, removal of SNPs HWE P <0.0001, palindrom SNPs and
SNPs with MAF deviating more than 10% for EUR reference
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populations. Subjects were Sex checked and individuals were filtered
based on SNP call rate > 98%, individual call rate > 98% and excluding
MDS outliers. Genotypes were imputed using the HRCv1.1 reference
panel and using the Eagle and minimac3 software implemented in the
Michigan Imputation Server for pre-phasing and imputation, respec-
tively, resulting in 7,712,287 SNPs dosages. Subsequently, SNP names
were changed to rsID and duplicate rsIDs were removed (multiallelic
markers and SNP annotation duplicates). This procedure left 556
individuals suffering from SCZ or schizoaffective disorder. The
resulting variants were matched with the final set of 5,934,252 variants
harmonized for PGC2 cohorts and CMC genotyping data (SCZ-mat-
ched variants). Variants with ALT frequency differences between the
PsyCourse Study and CMC not exceeding 0.15 were kept, yielding to
5,094,785 SNPs in the PsyCourse Study also available in the SCZ-
matched variants set. Finally, gene expression was imputed based on
previously trained models of DLPC tissue using SCZ-matched variants
(see “From imputed gene expression to gene T-scores” section).

From imputed gene expression to gene T-scores
After the gene expression prediction model is built on reference
panels, the first step is to impute tissue-specific gene expression on
genotype-only cohorts based on PriLer models (Supplementary Fig. 1
Module 2). Let eX be the L×P matrix of dosages for L new individuals.
For each reliable gene n (R2 ≥0:01 and R2

cv>0) in a certain tissue, we
predict gene expression for L individuals based on cis-effects esti-
mated via PriLer

cW n: = eXbβn ð11Þ

In all applications with the only exception of SHIP-Trend Trend
cohort and the PsyCourse Study, P variants in the genotype-only
datasets and reference panels are matched via the harmonization
process described in “Genotype-only datasets preprocessing” section.
Thus, bβn is a P-length vector with non-zero entries only in correspon-
dence of the cis-variants in 200 kb window of the gene n TSS. Instead,
the genotype matrix of SHIP-Trend and PsyCourse are composed of a
subset of the original CAD-matched variants or SCZ-matched respec-
tively, of dimension Q<P. In these cases, gene expression is imputed
using Q regression coefficients bβQ

n also available in bβn.
We do not use directly predicted gene expression to test for dis-

ease association but convert the imputed expression to gene t-scores
for each individual. T-scores are generated as individual moderated
t-statistic or ordinary t-statistic depending on the sample size due to
computational feasibility. For each cohort in PGC and CARDIoGRAM,
the samples are divided in a reference set comprising randomly
selected 80% of the control individuals as well as the comparison set,
composed of the remaining controls plus all the cases. A moderate
t-statistic is computed using eBayes function from limma R package64

between each individual in the comparison set and all the other sam-
ples in the reference set, bootstrapping over the controls and aver-
aging across 40 folds. The same procedure is used in SHIP-Trend
cohort and the PsyCourse Study however without a priori cases-
controls division. Instead, in each repetition 80% of the individuals
were randomly selected as the reference set.

In UKBB, due to the large sample size ( ~ 340,000) we defined
gene t-score as the ordinary t-statistic for each sample l in the com-

parison set as
�Cn

sdðCnÞ=
ffiffiffiffiffiffi
Lref

p where Cn : = bWn lð Þ � cWn refð Þ is the vector of
singular differences between current sample l and the samples in
reference set of size Lref . For CAD analysis, we adopted bootstrapping
technique over 10 folds and used as reference set 30% of individuals
not annotated as CAD (SOFT) for a total of 92,784 individuals. For SCZ
related phenotypes analysis in UKBB instead, we did not use a priori
cases-controls division but randomly selected 10 times 20% of the
individuals (68,190 in total) as reference set. Differently from the large

incidence of CAD in UKBB cohort, individuals with registered schizo-
phrenia disorders were limited to 1022 out of 340,939 considered
samples (ICD10 F20-F29, ICD9 295, self-reported schizophrenia).
Because they only compose the 0.29% of the total cohort, they are
negligible to the actual reference set size, and we simply sampled
across the entire population.

Importantly, the use of gene T-scores instead of imputed gene
expression leads to a similar distribution of genes across all samples
(mean around 0 and variance around 1), removing the dependence on
PriLer predicted performances and the correlation among samples
present in imputed gene expression (see “Gene T-scores reduce sam-
ples correlation and leads to the same distribution for each gene”
section).

Computation of individual-level pathway-scores
From the gene T-scores, we subsequently computed individual level
pathway scores. In contrast toprevious approaches65–67, wedonot set a
cut-off for gene level significance or perform an enrichment analysis.
Instead, for each sample a representative score for thepathwayactivity
is computed as the mean across gene T-scores that belong to a certain
pathway. We used as pathway databases Reactome32 and Gene
Ontology31 as default in CASTom-iGEx pipeline and additionally con-
sidered Human WikiPathways68 as custom gene-sets. In each tissue,
gene-sets are defined based on the reliable set in that tissue (R2 ≥0:01
and R2

cv>0) and only pathways that are not redundant (i.e. composed
by the same set of genes) are retained, giving priority to more specific
gene-sets being composed of a lower number of genes. The advantage
of gene T-scores in the computation of pathways instead of directly
imputed gene expression relies on the new scaling space.

Association of genes and pathways with a trait
For both gene T-scores and pathway scores, we separately tested the
association of each gene/pathway with a certain trait (Supplementary
Fig. 1 Module 2), using glm (Gaussian or logistic regression for con-
tinuous or binary trait) or polr (ordinal logistic regression for ordered
categorical) functions in R and correcting for additional covariates. In
case of CARDIoGRAM cohorts and UKBB for CAD analysis, we cor-
rected for sex and first 10 Principal Components (PCs) estimated from
pre-imputed data. In case of SCZ cohorts, we corrected for 10 PCs
(from 1 to 7, 9,15 and 18) as suggested in41, correcting for biases due
array type and to population structure, that are partially reflected in
the phenotypic variability. We used additional covariates in UKBB
dataset for CAD analysis when testing blood biochemistry (category
17518) and blood count (category 100081) phenotypes to correct for
medication effect affecting blood levels: medication for pain relief,
constipation, heartburn (Field 6154), dietary supplements (Field 6155,
6179) and medication for cholesterol, blood pressure and diabetes
(Field 6153, 6177). When using UKBB for SCZ related phenotypes
instead, we considered as confounders first 10 PCs, age, sex and phe-
notype specific covariates: for ‘Maximumdigits remembered correctly’
(Field 4282) additional covariates are fields 4250, 4253, 4283 and 4285;
for Symbol digit substitution (category 122) we tested fields 20158,
20230 and 20245 additionally correcting for fields 20195 and 20200;
for T1 structural brain MRI (category 110) we tested all data fields and
regional gray matter volumes subclass correcting for scanner coordi-
nates (fields 25756-25759). In general, we refer as gene/pathway
Z-statistics as the estimated effect for trait association divided by its
standard error.

In case of multiple cohorts (CARDIoGRAM and PGC), we imple-
mented an approach for meta-analysis similar to GWAMA69. Namely, a
fixed-effect meta-analysis is initially performed for each gene/pathway
weighted by the inverse of their variance. In the presence of hetero-
geneity effects between cohorts tested via Cochran’s statistic
(P ≤0.001), we adopted a random-effectsmeta-analysis calculating the
random-effects variance component.
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Genes and pathways are finally corrected for multiple testing
controlling false discovery rate (FDR) using Benjamini-Hochberg pro-
cedure for each tissue, removing pathways composed of a single gene
and considering each pathway database separately.

Finally, to identify loci harboring associatedgenes, wedefined loci
based on gene TSS position, using a window of 200 kb in both direc-
tions andmerging genes with overlapping window or with boundaries
not distant more than 1Mb.

GWAS for coronary artery disease
We compare our TWAS and PALASwith two GWAS summary statistics.
The first GWAS (simply referred as “GWAS”) is a recent meta-analysis
of UK Biobank SOFT CAD GWAS with CARDIoGRAMplusC4D
1000 Genomes-based GWAS and the Myocardial Infarction
Genetics and CARDIoGRAM Exome61 downloaded from www.
CARDIOGRAMPLUSC4D.ORG. The second GWAS, also called “mat-
ched GWAS” is performed on UKBB data set using PLINK (v2.00a2LM)
software70 via --glm option using the same individuals, case-control
distribution, covariates as well as SNPs and indels. In both cases, GWAS
p-values are adjusted with Benjamini-Hochberg (BH) procedure to be
consistent with the correction adopted for TWAS and PALAS results.
The first GWAS is used study the novelty of the identified loci fromour
TWAS. The matched GWAS instead is used to compare GWAS, TWAS
and PALAS summary statistics, having kept the same sample size and
variants, and to investigate the aggregation of small effects variants
into biological mechanisms, i.e. genes and pathways.

Additional pathway-detection methods
We applied other two state-of-the-art strategies to detect significant
pathways in CAD.

The first is based on hyper-geometric test using significantly
associated genes from TWAS. For each tissue, we considered genes
reliable in a tissue as background. For each pathway detected in a
tissue based on the reliably expressed genes, we computed an
hypergeometric test using fisher-exact test R function (alternative = ”

greater”). We considered as genes in a pathway those genes that are
also reliably expressed in the considered tissue and we intersect this
set with the genes FDR 0.05.

The secondmethod is based onMAGMA34 using amatched GWAS
from the UKBB or GWAS results from the summary statistics of a
recent large GWAS71. MAGMA analysis was performed by first anno-
tating all SNP locations with genes in vicinity using standard para-
meters and magma –annotate. Subsequently, we performed gene
analysis on SNP p-value data using the European reference panel from
Phase 3 of the 1000 Genomes project and GO as well as Reactome
pathways for subsequent pathway level analysis leaving all parameters
at their standard values. Only pathways significant below an FDR of
0.05 were retained for further analysis.

Pathway characterization and prioritization
To further characterize the significant pathways identified, we split
them into two classes based on the corresponding genes significance.
Let Ω be a significant pathway with FDR(Ω) ≤0:05. Suppose Ω is
defined from fg1, . . . ,gng genes (called original genes) of which
fg1, . . . ,geng (en≤n) are those also reliable in the tissue considered
(called T-score genes) and hence used to compute the corresponding
pathway score. We divided pathways into two categories. The first
category is composed of pathways with at least one gene more sig-
nificant than the pathway association, i.e. it exists a gene gi 2
fg1, . . . ,geng such that p-value (gi) ≤p-value (Ω). The remaining sig-
nificant pathways (second category) are then formed by genes all less
significant than the pathway itself, i.e. for all gi 2 fg1, . . . ,geng it results
p-value (gi) > p-value(Ω). These are further split in those including at
least one gene significant at FDR 0.05 (green) and those having no
gene passing FDR 0.05 threshold, hence considered “novel”. Pathways

in the first category are perturbed by the action one or more strong
effect genes with non-concordant effects, whereas pathways in the
second category are disrupted by the aggregation of effects, either
from putative targets identified from TWAS or from completely weak
signals that would be missed using a p-value cut-off strategy,
hence novel.

For group-specific pathway/endophenotype analysis, we only
considered group specificpathways (PALAS2, FDR≤0.1) thatwere also
significantly associatedwith the respective endophenotype (FDR ≤0.1)
and plotted a subset of selected results from this pathway group in
Fig. 5b. All pathways are listed in Supplementary Data 6.

Patient stratification based on gene T-scores
For the purpose of stratifying patients based solely on genetically
derived data (Supplementary Fig. 1 Module 3), we adopted a graph-
based clustering approach similar to the PhenoGraph method72

developed to identify clusters in large high-dimensional data sets. This
method is well established in the field of gene expression based clus-
tering and also implemented in one of the most popular analysis
toolboxes Seurat73. Since this method is tailored to (single-cell) gene
expression data, well established in the field and highly computational
efficient (a key requirement due to the high number of samples on
genotype-only cohorts), we chose this general clustering approach.
This method relies on the embedding of high-dimensional data points
in a graph structure with edges (i.e. similarity) defined from shared
overlap in their local neighborhoods. Similarly to previous improved
implementations of thismethod73, we apply amodularity optimization
technique to obtain well defined clusters, e.g. the recently developed
Leiden clustering. Compared to the previous strategy based the
Louvain clustering, Leiden clustering ensures well-connected
communities29. The sparse similarity matrix for each pair of samples
based on the number of shared nearest neighbor (SNN) is constructed
starting from the scaled exponential similarity kernel74 (see below).
This allows to capturemore complex relationship between data points
and to consider the local density of the data due to the customized
scaling parameter σi,j . We therefore opted for this similarity measure
which is also widely used in the field.

Prior to clustering, we apply for each tissue the following pre-
processing steps to perform features filtering and normalization, and
reduce ancestry contribution. First, gene T-scores are clumped at
absolute Pearson correlation of 0.9, with the correlation directly esti-
mated from the considered cases and giving priority to genes that are
more significantwith respect to thediseaseof interest. Indetails, genes
are sorted from the most to the least significantly associated with the
phenotype of interest (CAD or SCZ) based on the TWAS p-value. All
genes are initially assigned to a “current set” and the first gene in this
list is compared to all the others based on Pearson correlation esti-
mated from that set of samples, the genes with an absolute Pearson
correlation > 0.9 are included in the “remove set”. The “current set” is
then updated removing the considered genes and the correlated ones
above 0.9 threshold and the entire procedure is repeated until “cur-
rent set” coincides with an empty set. Finally, the set of clumped genes
is obtained discarding the genes in the “remove set” from those initi-
ally available in the tissue. The aim of this step is to remove highly
redundant genes to not inflate the results. The selection of the Pearson
correlation threshold for clumping is based on a grid search for all
values between 0.1 and 1, using coverage/conductance and number of
cluster/loci as a benchmarking criterion (see “Selection of K- Nearest
Neighbor parameter and correlation threshold for clumping in clus-
tering” section for empirical derivation).

Second, each gene is standardized removing the average and
dividing for sample standard deviation computed across cases ðx�μ

σ Þ.
This step is performed to weigh the contribution of each gene across
all patients equally at this step andhave themon the same scale. Gene
T-score computation from imputed gene expression harmonized the
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distributions (see “Gene T-scores reduce samples correlation and
leads to the same distribution for each gene” section), nevertheless
for the clustering we are considering a subset of the original sample
space (patients only). Hence, the re-standardization allows to have
the same mean-variance across all samples considered in the clus-
tering, before the actual TWAS-rescaling step. Third, standardized
gene T-scores are independently corrected for the same PCs con-
sidered in TWAS/PALAS, taking the residuals of the gene-specific
linear model. This step is crucial to reduce the relevance of popula-
tion structure in the final clustering (see Supplementary Fig. 5i,
Supplementary Fig. 8, Supplementary Fig. 18). Fourth, the corrected
gene T-scores aremultiplied by the corresponding Z-statistic for trait
association (CAD or SCZ) such that i) differences between patients
are enhanced and ii) genes that are more relevant for a certain trait
will have a higher impact in the clustering decision, despite retaining
all the information (see “Benchmark of genes TWAS-scaling in clus-
tering” section). For SCZ clustering on PGC cohorts, the different
data sets are merged together via concatenation and the same steps
descried before are applied across all samples, even PCs correction
on themerged data set due to PCs estimation on themerged cohorts
in PGC wave2. Given the data heterogeneity of the different PGC
cohorts, we additionally perform outlier removal. In particular, the
four steps previously described are performed and outliers are
detected as a union across 10 tissues of samples that deviate beyond
median ± 6x s.d. for the first 2 UMAP components (minimumdistance
= 0.01 and n. of neighbor = 20). These SCZ affected individuals are
excluded from further analysis and the pre-processing steps are
performed again on the filtered set of samples. Across the 36 PGC
cohorts, 35wereused for clustering, filtering 165 outliers for a total of
22,827 cases and 1 cohort (scz_boco_eur, 1,773 cases) was used for
external validation. In SCZ analysis, the set of variants of PGC cohorts
was not harmonized with UKBB data set that is used to approximate
missing phenotype information (see “Risk scores computation” sec-
tion). Thus, to ensure a consistent imputation of the genetic vari-
ables, we computed Pearson correlation of impute gene expression
and imputed pathway scores between the models built from UKBB
and PGC. Genes and pathways are included in the clustering analysis
if the correlation between imputation on the reference panels GTEx
andCMCbetween the two genotype-only data sets is higher than 0.8.
After pre-processing, we construct a sparse similarity matrix for each
pair of samples based on the number of shared nearest neighbor
(SNN). We initially computed scaled exponential similarity kernel74

between samples i and j as

K i,jð Þ= exp �
ed2 Zi ,Zj

� �
0:5σi,j

0
@

1
A ð12Þ

with ed Zi ,Zj

� �
the Euclidean distance between normalized gene-level

t-scores and

σi,j =
mean ed Zi ,Ni

� �� �
+mean ed Zj ,Nj

� �� �
+ ed Zi,Zj

� �
3

ð13Þ

where mean ed Zi,Ni

� �� �
is the averaged Euclidean distance between

sample i its k closest neighbors. Hence, this initial similarity matrix
depends already on the local density of the data due to the customized
scaling parameter σi,j . However, to sparsify the similarity and give
information only on the local interactions, we used the similarity ker-
nel defined above to compute the percentage of shared nearest
neighbor (SNN) between samples i and j:

S i,jð Þ= jvi \ vjj
jvi ∪ vjj

ð14Þ

with vi the set of k nearest neighbor based on K . S matrix represents
the weight for edges in the patient graph structure. We fixed the
parameter k to define the closest neighbors as 20 (see “Selection of K-
Nearest Neighbor parameter and correlation threshold for clumping in
clustering” section for empirical derivation). We finally applied Leiden
method29 implemented in igraph R package75 to detect communities
that would maximize modularity based on SNN graph.

Polygenic risk score computation in CAD cases
To compute polygenic risk score (PRS) for individuals in UKBB related
to CAD phenotype, we used PRSice2 software76 with default para-
meters. We considered as base and target data sets the UKBB cohort
with CAD phenotype. The GWAS results for --base input are the mat-
ched GWAS summary statistics as described in “GWAS for coronary
arterydisease”. Distributions among cases and controls division aswell
as clusterswereobtained after standardizationof best-fit PRS across all
individuals. Of note, the use of the same data set for base (GWAS
summary statistic) and target (prediction) cohort leads to overfit in the
separation between cases and controls. Nevertheless, the focus of this
analysis is not the variance explained of CAD by PRS but rather the
similar distribution and non-stratification of the identified cluster of
cases as well as the partition of cases in groups based on PRS
distribution.

Detection of genes and biological pathways associated with
clustering structure
In order to test for genes and pathways associated with detected
clustering structure, we considered each tissue separately and test
differences of a certain gene/pathway in grg versus the remaining
patients via Wilcoxon-Mann-Whitney (WMW) test implemented in
rstatix R package77. In each test, the WMW estimates and confidence
intervals are computed corresponding to themedian difference of the
location parameter (Hodges-Lehmann estimator). Let G be the total
number of clusters detected, for each group gin1, . . . ,G in a tissue,
p-values were corrected for multiple comparison using Benjamini-
Hochberg procedure to control for false discovery rate. Note that,
although the clustering is tissue specific, we tested for differences in
gene and molecular pathways across all tissues. Cluster-specific genes
were subsequently combined across tissues in loci based on physical
location (TSS window 200 kb, merged if distance <1Mb). To identify
cluster-specific pathways, we tested only pathways filtered with the
following strategy. For each tissue, we considered pathways both in
Reactome and GO composed of at least 3 genes and nomore than 200
(both original genes and T-score genes in the pathway). These path-
ways are then clumped giving priority to those with the highest cov-
erage (ratio between T-score genes and original genes) and highest
number of genes used to compute the pathway (T-score genes). The
resulting set of pathways have a pairwise Jaccard Index based on gene
set not exceeding 0.2.

In addition, we tested pathways in WikiPathway and Common-
Mind gene-sets9 in SCZ without this initially filtering but using all the
available pathways.

Cluster-specific PALAS in CAD (PALAS 2)
In the context of CAD clustering characterization, we also performed a
cluster-specific PALAS analysis, referred as PALAS 2. We tested each
group of CAD cases detected on liver versus 321,831 non-affected
individuals (CADHARDdefinition), the same set of controls used in the
CAD PALAS analysis. The total number of pathways tested is 36,949
across all tissues (11 from GTEx) and 3 databases (WikiPathways, GO
and Reactome). This same set was also tested in the CAD PALAS (non-
affected individuals vs CAD HARD, called PALAS 1). Among the 567
pathways associated with CAD from PALAS 1 (FDR 0.05), we reduced
this list to unique pathways and consistent across tissues. Namely, we
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retained the pathways associated only in a tissue and for those avail-
able inmore thanone tissuewekept the onewith strongest association
to CAD if the Z-statistics were concordant in sign and excluded that
pathway otherwise. This led to a final list of 461 unique pathways from
PALAS 1. We then divided this set into 2 groups. The first group is
composed of those pathways having the same Z-statistic sign across
PALAS 1 and PALAS 2 (across all groups and even if not significant in
PALAS 2), and those having at least one group Z-statistic discordant in
sign with either PALAS 1 or another group from PALAS 2. In addition,
we intersected these results with the cluster-specific WMW analysis
(see above, referred as WMW group) testing one group versus all the
other cases. The filtered list of pathways from WMW group (7,978
across all tissues) was intersected with those significant in PALAS 1
(FDR0.05), PALAS 2 (FDR0.05) andWMWgroup significant (FDR0.01,
see “Clustering simulation in CAD” section for set-up of 0.01
threshold).

Predict cluster structure and validate gene and pathway
signatures
Similarly to PhenoGraph approach, we implemented a projection
method based on the percentage of SNN in order to use the detected
clustering structure from one cohort to predict groups on external
cohorts such as CARDIoGRAM for CAD and scz_boco_eur for SCZ. In
particular, for each cohort we considered only genes used in the
clustering model and repeated the gene-specific standardization,
correction for PCs and Z-statistic multiplication as described in the
clustering pre-processing procedure. The Z-statistic for the projection
coincides with the one used in the initial clustering and is obtained
from the general TWAS. Then, we computed the percentage of SNN
based on the exponential similarity kernel as previously described
among each pair of individuals in the combined datasets (model plus
external cohort). For each sample in the external cohort, the assigned
label is based on the probability that a random walk originating at
external samplewillfirst reacha labeled sample in themodel clustering
for each group G. The problem is solved via a system of linear equa-
tions based on graph Laplacian of the enlarged sample network and
eachnew sample is then allocated to the group that it reaches firstwith
highest probability, see72 for details.

We evaluated the projected clustering on external cohorts based
on i) the fraction of cases assigned to a certain cluster both in model
clustering and projected and ii) the correlation among cluster-relevant
genes. The latter is computed for each group as the Spearman corre-
lation of WMW estimates for model clustering and external cohort
across all tissues, including only genes that are cluster-relevant
(FDR <0.05) in the model. In addition, we estimated the number of
reproduced loci in the external cohort using the identified loci of
cluster-relevant genes. For each group g, we considered each relevant
locus and retained the most significant gene in that locus, we then
annotated the locus as replicated if the WMW estimate for that gene
has the same sign in model and external cohort.

Similar approach was used to validate discovered patient group-
specific biological pathways. Using the projected group structure in
external cohorts (CARDIoGRAM), we calculated Wilcoxon-Mann-
Whitney estimates for pathway scores in a particular group com-
pared to the rest of the samples for each external cohort (see
“Detection of genes andbiological pathways associatedwith clustering
structure” section). The resulting estimates were compared to the
estimates for common significant (FDR <0.05) group-specific path-
ways in UKBB using Spearman correlation.

Detection of endophenotype differences across patient strata
To test for differences among trait related endophenotypes across
patient clusters, we applied generalized linearmodels to detect group-
specific differences, comparing group gðgrg Þ versus the remaining
samples. More specifically, we applied this strategy for the CAD

analysis, leveraging the UKBB deep phenotyping and 635 phenotypes
included the following categories: alcohol, arterial stiffness, blood
biochemistry, blood count, blood pressure, body size measures, diet,
hand grip strength, impedance measures, physical activity, sleep, and
smoking (class 1 phenotypes). We also included additional clinical
information such as family history, medications, ICD10 diagnosis
related to anemia, circulatory system, respiratory system, and endo-
crine system (class 2 phenotypes). The following phenotypes were
excluded: all phenotypes having less than 100 values, binary pheno-
types with less than 50 true values and categorical ordinal phenotypes
with less than 10 samples in the base category both inside and outside
the considered group. Continuous phenotypes were initially standar-
dized x�μ

σ

� �
: Depending on the nature of the phenotype (continuous,

binary or categorical ordinal) and similarly to trait-gene/pathway
association, for endophenotype j and group g, we applied the fol-
lowing generalized linear model (GLM):

phenoj ∼ grg + cov1 + � � � + covl ð15Þ

with grg a binary n. of cases-vector having 1 in correspondence
individuals clustered in group g. In both class 1 and 2 phenotypes, the
covariates includedfirst 10 PCs, age and sex. Additionally, for class 1we
also corrected for medication usage: pain relief medication (aspirin,
ibuprofen, paracetamol), vitamin supplements (A, B, C, D, E, folic acid),
mineral and dietary supplements (glucosamine, calcium, zinc, iron,
selenium), blood pressure medication, cholesterol lowering medica-
tion and insulin usage (part of Fields 6154, 6155, 6179, 6153, 6177).
Hence, for each endophenotype j andgroup g weobtained anestimate
of group g impact with respect to all the other cases in the form of
adjusted regression coefficient βGLM and corresponding p-value tested
from normality assumption.

For CAD clustering in liver, we further split the phenotype in
two groups: those more strongly informative for CAD (“relevant”:
blood biochemistry, blood count, blood pressure, blood size mea-
sures, impendence measures, arterial stiffness, hand grip strength,
early life factors, family history, height, and ICD10 diagnosis)
composed 249 phenotypes and those less relevant to CAD (“con-
trol”: alcohol, diet, medication, medications, physical activity,
sleep, smoking) composed of 386 phenotypes. The “relevant” and
“control” class were separately corrected for multiple test associa-
tions using Benjamini-Hochberg procedure (separately per group)
and results with FDR≤ 0.1 in the “relevant” group where investi-
gated further.

In case of the hypothesis-driven analysis for CAD, we first tested
with the same procedure 33 clinical variables among UKBB (Sup-
plementary Data 7) and 2 endophenotypes registered for GerMIFSV
(Gensini score and n. of vessel affected). In contrast to the general
analysis, clinical variables in UKBB were not converted via PHESANT
software but directly used including an additional permutation
based p-value. To that end, individuals were randomly assigned to
any of the 5 CAD clusters, respecting the original group in liver
followed by the same GLM based endophenotype analysis, this was
repeated 50 times (see “Patients clustering simulation in CAD”
section). We then determined the frequency that a particular clin-
ical variable was nominally (p-value ≤0:05) associated with any of
the groups in any of the 50 partitions and used this frequency to
determine an empirical p-value by dividing by the number of tests.
We then retain only clinical variables with an empirical p-value and a
GLM based p-value below 0.05.

For the SHIP Trend cohort, both 20 collected clinical variables
(imt_auto_t0, ldlch, hdlch, tg_s, igf1, hba1c, crp_hs_re_z, bmi_t0, bia_-
magermasse, sysbp_t0, diabp_t0, hyp_t0, mi_first_t0, stroke_first_t0,
plaque_t0, stenos_t0, fmd_reduced, abi_pathol, mort_all, mort_cvd)
and 24,925 measured gene transcripts across 975 samples were tes-
ted with the previously described procedure. We included as
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covariates testing group-specific clinical variable differences the first
10 PCs, sex, genotype array type and medication info for blood
pressure, cholesterol lowering and insulin. In addition to these cov-
ariates, we also included in the cluster-specific measured gene
expression analysis RNA integrity number, amplification batch (96
well plates), sample storage time, white blood cell count, hematocrit,
red blood cell count, platelet count as well as neutrophils, lympho-
cytes, monocytes, and basophiles percentages. To compare the dif-
ferences in actual gene expression with the imputed one, we
considered only group-wise significant genes from UKBB at FDR 0.01
in whole blood. Measured transcripts were restricted to the set of
group-specific significant genes from UKBB matched by not null
ENTREZ gene ID. P-values for adjusted beta in this subset of tran-
scripts were corrected via Benjamini-Hochberg procedure. In addi-
tion, we built pathway-scores in SHIP-Trend cohort from the
measured gene expression (called measured pathway-scores) and
tested group-specific differences via GLM. These measured pathway-
scores are obtained in a similar manner to the predicted gene
expression but using all measured genes in the whole blood micro-
array dataset based on the quantile normalized, z-scored residuals
after correction for covariates. Groups with less than 15 measure-
ments were excluded from group-wise comparison.

For the PsyCourse Study, we tested the following phenotypes
using the same GLM based procedure evaluating the following
variables: v1_nrpsy_tmt_A_rt, v1_dur_illness, v1_age_1st_inpat_trm,
v1_age_1st_out_trm, v1_nrpsy_dg_sym, v1_panss_sum_pos, v1_tms_
daypat_outpat_trm, v1_bmi, v1_nrpsy_tmt_B_rt, v1_cat_daypa-
t_outpat_trm, v1_cgi_s, v1_nrpsy_mtv, v1_outpat_psy_trm, v1_gaf,
v1_nrpsy_mwtb, v1_panss_sum_neg, v1_nrpsy_dgt_sp_bck, v1_fam_
hist, v1_nrpsy_dgt_sp_frw, including Age, Sex, center of patient
recruitment and the first two PCs from the genotype analysis as
covariates.

Group-specific treatment response analysis in CAD
Taking advantage of the treatment annotation in UKBB data, we
investigated whether cases from different genetically detect groups
exhibited a different treatment response. For this purpose, we regar-
ded as response phenotypes the categories of arterial stiffness, blood
biochemistry, blood count, blood pressure, body size measure, hand
grip strength and impedance measures; and we considered as treat-
ments the 17 medications previously described for endophenotype
differences analysis (pain relief, vitamin supplements, mineral and
dietary supplements, blood pressuremedication, cholesterol lowering
medication and insulin). Consider group g composed of ng cases
and consider phenotype j values in corresponding of group g
(phenojðgrg Þ). Phenotypes with less the 300 available values were
excluded, and continuous ones were normalized. The response for
medication i (e.g. cholesterol lowering medication) in group g mea-
sured based on phenotype j is tested via GLM

phenoj grg
� �

∼medi grg
� �

+ cov1 grg
� �

+ � � � + covl grg
� �

ð16Þ

and we denote as β̂i,j,g regression coefficient representing treatment i
effect on phenotype j in group g. We used as covariates first 10 PCs,
age, sex as well as all the other treatment binary categories. In order to
test differences among treatment-phenotype effects across groups,
for each pair of groups (g,h) we evaluated regression coefficient
differences using Z-test78:

Zi,j g,hð Þ=
bβi,j,g � bβi,j,hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SEbβi,j,g

� �2
+ SEbβi,j,h

� �2
r ð17Þ

where SE is the standard error for regression coefficient computed
from GLM. P-values were computed under the assumption of normal

distribution and corrected for multiple testing across all the
phenotypes but separately for each group-pair (g,h) and treatment j
taken into consideration.

Risk scores computation and differences detection in cases
stratification
In order to test for endophenotypicdifferences in datasetswithout any
endophenotypic information such as PGC cohorts, we developed a
strategy to annotate patient with endophenotypes from genetic
information using tissue-specific endophenotype-risk scores (endo-
RS). For each tissue, gene-phenotype association was estimated
(TWAS) as previously described in UKBB for phenotype j, obtaining for

each gene n association Z-statisticZj
n =

β j
n

SEβ j
n
. Secondly, we filtered

redundant genes due to LD structure clumping genes at 0.1 squared
Pearson correlation cut-off and giving priority to those with higher

genotype R2 imputation. The correlation among genes was estimated
via a subset ofUKBB sampleswithout CADHARDdiagnosis. Finally, for
an external cohort composed of L individuals, endo-RS is defined as
the L-vector of weighted sum for gene t-scores previously corrected
for PCs (TnL-vector, for n = 1, � � � ,N) multiplied by gene-phenotype

Z-statistic Zj
n:

RSj =
X

n= 1,...,N

TnZ
j
n ð18Þ

Hence, we obtained a continuous risk score that mimics the actual
phenotype not available for PGC cohorts, which was then tested for
group-specific differences. Namely, PGC cohorts are combined, and
each gene is corrected for PCs as described in the clustering
procedure. Endo-RS are then computed with phenotype effect
estimated from UKBB and standardized. Finally, cluster differences
are tested via GLM with gaussian link function including PCs as
covariates and considering the partition of SCZ cases previously
computed on PGC cohorts. In SCZ analysis, we leveraged TWAS results
for 1,000 phenotypes fromUKBB among the categories of alcohol use,
anxiety, blood biochemistry, blood count, blood count ratio, blood
pressure, body sizemeasure, cannabis use, depression, dMRI skeleton,
happiness and well-being, mental distress and health, sleep, smoking,
social support, susceptibility-weighted brain MRI, T1 structural brain
MRI, task functional brain MRI, traumatic events. In hypothesis-driven
analysis, we specifically investigated cognitive function and used
TWAS Z-statistic from numeric memory, pairs matching, prospective
memory, reaction time, fluid intelligence, symbol digit substitution,
trail making.

The reliability of the endo-rs to estimate the actual endopheno-
type differences depends on i) the number of samples in the gene-
endophenotype association analysis together with the genetic herit-
ability of the phenotype and ii) the effect size of the cluster specific
difference. The formerwasmeasured inUKBB via F-test statistic: endo-
rs ability to model actual phenotype was estimated via nested linear
models of phenotype predicted via endo-rs plus covariates or only
covariates. The latter was estimated via the absolute value of the
regression coefficient from GLM cluster differences for endo-rs (jβg j
for gin1, � � � ,G groups). Hence, we defined a cluster-reliable non-
negative measure (CRM) for each endophenotype i and group g
as the product of F-statistic and cluster-specific coefficient:
CRMðj,gÞ= Fstatj�jβg j (see “Validation of gene risk scores to mimic
actual phenotype in cluster-specific differences” section for
validation).

Clustering based on genotype derived principal components
To study the ancestry contribution to tissue-specific clustering, we
separately cluster cases (CAD or SCZ) solely based on the PCs
derived from genotype data. For CAD, we considered the first 40
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PCs available in UKBB data set. For SCZ instead we considered the
first 20 PCs available and computed jointly in the PGC cohorts. In
both diseases, we separately standardized each PCs to mean 0 and
standard deviation 1 and performed Louvain clustering on shared
nearest neighbor network built from the available PCs. We then
compared the obtained clustering structure to those obtained
from the actual tissues via NMI and compared it to the 10,000
random partitions of cases of the same size (Supplementary
Fig. 8c, Supplementary Fig. 18c). To investigate the overlap at the
single group level, we additionally computed the odds ratio from
Fisher’s Exact test comparing each pair of groups from PCs and
imputed gene expression, namely individuals in gri (PC) and out-
side gri (PC) with individuals in grj (imputed expression) and out-
side grj (imputed expression) (Supplementary Fig. 8d,
Supplementary Fig. 18d). Finally, endophenotype differences in PC
clustering was performed via previously described GLM approach
but only correcting for age and sex covariates. To compare
endophenotype differences, we considered for each endopheno-
type tested the group reaching highest significance (lowest p-
value) and compared -log10p-value between clustering based on
PCs and based on imputed gene expression (Supplementary
Fig. 8f, Supplementary Fig. 18e).

Comparison of CASTom-iGEx clustering with PRS-based
partition
We computed the PRS for CAD affected individuals based on their
genotype (see “Polygenic risk score computation in CAD cases” sec-
tion) and partitioned the samples based on the quartiles cut-offs,
obtaining four equally sized groups (gr1 = 0%-25%, gr2 = 25%-50%,
gr3 = 50%-75%, gr4 = 75%-100%). To compute the variance explained by
PRS partitions for CAD endophenotypes, we considered only CAD
affected individuals and used a nested linear models approach. In
particular, we compared the full model M1: pheno ~ groups + cov with
the covariates only model M2: pheno ~ cov. The group information is
converted into one-hot encoding format with n features equals to the
number of groups and 1 indicating the cluster membership. The cov-
ariates used are the same as those for the cluster-specific endophe-
notype analysis. The variance explained by the PRS partition R2 is
obtained as the difference between R2 from the full model M1 and R2

from the covariates onlymodelM2. Note that the values are not scaled
via the liability scale and their range is small. Nevertheless, the point
aim of this analysis is the comparison between two clustering struc-
tures (CASTom-iGExmethod and PRSpartition) whichwould share the
same liability scale of the phenotype.

CASTom-iGEx framework with EpiXcan gene expression models
EpiXcan model for liver (trained on GTEx data) was downloaded on
03.07.23 from https://bendlj01.dmz.hpc.mssm.edu/epixcan/about.
php (however, since then the models were moved to https://www.
synapse.org/#!Synapse:syn52745629). The original implementation of
PrediXcan (https://github.com/hakyimlab/PrediXcan) was used to
predict expression on the UKBB genotype data with the EpiXcan
model. Notably, due to the fact that the UKBB data was previously
harmonizedwithCADGWASdata, only 60,067out of 147,349 (40.77%)
SNPs used by the EpiXcan model were present in the harmonized
genotypedata. After prediction, the imputedgene expressiondatawas
filtered to remove genes for which the q-value of prediction perfor-
mance of the EpiXcanmodel (contained in themetadata of themodel)
was higher than 0.01 and genes which were predicted to have no
expression in all of the samples. Thereafter, the standard PriLer and
CASTom-iGEx workflow starting from the calculation of gene T-scores
was performed.

CAD patients based on both PriLer gene expression models and
EpiXcan models were clustered in liver (results in Supplemen-
tary Fig. 22).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All summary level statistics are reported in the supplementary tables
or supplementary data sets. See legends for these files for detail. The
UKBBdata are privacy protected and access can be requested through
the UKBB data portal https://www.ukbiobank.ac.uk/. The GTEx data
are available through dbGAP accession number phs000424 (originally
v7.p2 downloaded on 11/28/2018): https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs000424.v9.p2 .The PGC
data are privacy protected and can be accessed through a secondary
analysis proposal sponsored by a PGC-SCZ working group PI member
that needs to be approved by the working group. Data access
instructions can be found at: https://pgc.unc.edu/for-researchers/
data-access-committee/data-access-information/. The German
cohorts of CARDIoGRAM consortium is privacy protected and can be
accessed through collaboration with PIs of the consortium, e.g.
through HS, see http://www.cardiogramplusc4d.org/data-downloads/.
The PsyCourse Study data are privacy protected but can be accessed
by submitting a research proposal (see http://www.psycourse.de/
openscience-en.html). The genotype and gene expression data from
the CommonMind consortium is privacy protected and can be acces-
sed via the CommonMind knowledge portal: https://doi.org/10.7303/
syn2759792. The SHIP-Trend study genotype data is privacy protected
and can be accessed through the study PIs: https://www.maelstrom-
research.org/study/ship. The trained tissue specific PriLer models on
GTEx v6p and CMC release 1 reference panels are available at https://
doi.org/10.6084/m9.figshare.22347574.v2. TWAS and PALAS summary
statistics forCADandSCZ canbe foundathttps://doi.org/10.6084/m9.
figshare.22495561.v1.

Code availability
The software pipeline is based on R and is available at https://github.
com/zillerlab/CASTom-iGEx. The code related to the paper analyzes is
available at https://github.com/zillerlab/CASTom-iGEx_Paper.
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